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The velocity distribution functon, f,, for a (linear) shear flow of a system of rigid inclastically
colliding disks in a plane is measured by applying a novel algorithm to results of (MD) simulations
involving 200 000 particles. The need to consider such a relatively large system is explained. It is
found that f, is well fined by an exponent of a second-order polynomial in the norm of the
fluccuating velocities with angle-dependent cocfficients (which also depend on the density and the
granular temperanue). Other characterizations of the system studied in this paper are presented as
background material. A hitherto unnoticed property of systems with Lees—Edwards boundary
conditions has been discovered and its origin is briefly explained. ® 1996 American Instirute of

Physics. [S1070-6631(96)00306-6]

i. INTRODUCTION

A granular material at high strain rates may be excited so
energetically that the frictional contacts berween individual
grains in it do nct endure and a fluidized state in which the
grains imteract by practically instantaneous collisions
emerges.'™® The microscopic dynamics of the fluidized
granular material (**granular fluid’*) resembles that of a clas-
cical fluid, except for the fact that the collisions in the granu-

fiuid are inelastdc. This difference turms out to be a source
__. numerous phenomena peculiar to granular fluids, such as
significant normal stress differences,’ "% spontaneous grain
clustering,'~!5 multistability phenomena,*”'7 inelastic
collapse,'®-% and more.'”® As a rule granular fluids are ge-
nerically inhomogeneous.

Despite a very different rheology, many theoretical ap-
proaches tq the problem of rapid granular flows are beavily
based on analogies with the dynamics of molecular fluids.
Phesomenological methods,'’*'*? continuum mechanical
and kinetic theoretical approaches?*~? are the major means
of obtaining constitutive relations for granular materials.
When applying kinetic theoretical techniques, the single-
particle distribution function, f, (and the two-particle distri-
bution function, at collision, in nondilute fluids) is of central
importance. This function can, in principle, be extracted
from the Boltzmann equation corresponding to the *‘granular
gas'' of interest (in the dilute case). Many kinetic studies of
granular gases employ conjectures for the form of f,; usually
it is assumed that f, has the form of a Gaussian with correc-
tions that are lincar in the gradients of the hydrodynamic
fields (in parallel to the standard results of the kinetic theory
of gases) or a generalized Gaussian.'®° The former method
£4i1s267% to account for the normal smess differences ob-
served in simulations.'”~® The latter approach does result in
normal stress differences that compare well with results of
numerical simulations. In another approach to this problem’!
fin which the Enskog correction to the Boltzmann equation is
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employed), the normal stress differences are awributed to
density gradients. In a recent theory™ it has been shown how
a systematic Chapman—-Enskog® expansion of the Boltz-
mann equation for granular fluids can be performed. and it
has been found that the source of the normal stress differ-
ences is the Burnett term.>* However, this theory is limited to
quasielastic systems. Clearly, it is of the umnost importance
to elucidate the nature of the single-particle distribution
function of granular fluids in an as bias-free and general
(e.g., not limited to weak inelasticity) way as possible. We
believe that Molecular Dynamics simulations provide the
means 1o achieve this goal. Previous investgations in which
this quantity has been studied were limited in accuracy be-
cause of insufficient statistics®? or the use of restrictive as-
sumptions such as spatial homogeneity and isotropy.**

In .the work presented here we consider a two-
dimensional system of smooth rigid disks, in 2 plane, whose
collisions are characterized by a single coefficient of normal
restitution. A linear velocity profile is achieved by employ-
ing the Lees—Edwards boundary conditions.’® Our main
finding is that the single-particle distribution is highly aniso-
tropic (yet quasi-Gaussian in the flucuating speeds). This
finding is related in part to results obtained in Refs. 36 and
37 in which the distribution function of the relative velocities
of grains in a vibrated (dense) system has been found to be
non-Gaussian and possess power-law tails. Both the lamer
work and our own reinforce the notion that distributions cor-
responding to granular matter are different from the familiar
distributions eacountered in the kinetic theory of molecular
systems.

This paper is organized as follows: in Sec. Il we present
the definition of the system that is studied in this paper. It
also provides a descripdon of some general characteristics of
the system, such as the temperature, density, and stress pro-
files and other microscopic and macroscopic characteristics.
In addirion, it describes a symmetry breaking effect thar
shows up in systems with Lees—Edwards boundary condi-
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- tions and provides a brief explanation of this effect. In Sec.
Ul we presens the algorithm thar is used to determine the
single-particle distribution from numerical data and the re-
sults of applying this algorithm to a typical shear flow. In

ec. TV we concentrate on the parametric dependence of the
distribution function and present more of its properties. In
Sec. V we present a comparison to the theory of Jenkins and
Richman and some concluding remarks.

Il. SOME CHARACTERISTICS OF THE SIMULATED
SYSTEM

A. The modal

The simulated system consists of & identical smooth
rigid disks of unit mass and diameter o in a rectangular en-
closure of size L,XL,. The macroscopic velocity field
points in the (streamwise) x direction and varies linearly as a
function of y. The Lees—Edwards type of boundary
conditions?’ is imposed in the simulations. These conditions
were originally employed to study transport properties of
simple fluids. Later they were used in simulations of granular
systems, e.g., in Refs. 6-9 and 11. These boundary condi-
tions ensure the linearity of the velocity profile (while *‘sav-
ing'’ the need w formulate a wall boundary condition; ef.,
e.g., Ref. 38). They correspond to fully periodic boundary
conditions applied in the Lagrangian frame for the shear
Aow’® (in the y direction). Effectively, one may think of the
upper and lower boundaries of the (rectangular) enclosure as
moving with velocities equal o =U//2, respectively, in the x
direction. The value of U is fixed as a parameter of the
simulation. Since U is the only input quantity whose dimen-

ion contains time, fixing the value of I/ amounts to fixing
e unit of time of the problem (also see the beginning of
Sec. 11 B below). The boundary conditions in the x direction
are taken to be periodic.

The only allowed interactions in the system are instan-
taneous collisions of pairs of disks. The collisions occur ei-
ther between two disks lying within the enclosure or berween
pairs of disks near opposite boundaries (by the periodicity of
the boundary conditions). The velocity of each disk is con-
stant berween collisions. The collision process is character-
ized by a constant coefficient of normal restitution, &, with
0<E<], i.e. vip-k = —&v,y-k, where v, is the relative ve-
Jocity of two particles (1 and 2) prior to their collision, v, is
their post-collisional relative velocity and k is the unit vector
pointing from the center of particle **1" to that of particle
**2'" at the dme of collision. This collision rule, when com-
bined with the conservation of linear momentum, determines
the outcome of the collision. Frictional interactions are not
considered in this work.

The initial condition for the simulation is similar to that
used in Ref. 11 and it is achieved as follows: a random
generatar is employed in order to produce 2 uniform distri-
bution of partcles in space with a Gaussian distribution of
the fluctuating speeds; care is taken to 2ero out the small
initial total momentum produced by the random generator
(by subtracting a fraction l/& of this momentum from the
momentum assigned to e¢ach particle). The system is then run
for some time with a coefficient of resdwution of unity to
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achieve a locally equilibrated state (with shear) and then the
inelastic collisions are nurmed on. The numerical method em-
ployed in the simulation is the highly efficient *‘event-
driven'* algorithm.

B. Some characteristics of the simulated system

The simulation of the system described in See. T A
shows that the system reaches a statistical steady state in a
(practically) finite time. In the simulation, a state of the sys-
tem is considered to be steady if several statistical character-
istics, to be described below, are time independent w within
numerical accuracy. It is important to stress that sheared
granular systems possess multiple steady states,'*!¢ the char-
acter of each of which depends on the initial condition of the
system and the transient stage of its evolution; here we limit
our consideration to the steady state obtained by the proce-
dure described in Sec. IT A, The parameters characterizing
the system at hand are the coefficient of restitution, &, the
total number of particles, N, the values of U,L, L, and the
diameter, o, of the disks. A uscful dimensionless quantity is
the system's average solid fraction, V. defined as
wNo¥/AL L, . The average shear rate, ¥, is defined as U/L,
(this is the only time scale determined by the input). Notice
that the values of N, v, L, and L, determine 0.

An elastic system subject to the Lees-Edwards bound-
ary conditions heats up monotonically while remaining in a
state whose temperature, density, and macroscopic velocity
gradient are spatially uniform. The inelastic sysiem, on the
other hand, has an internal energy sink due to the inelasic
collisions; hence it does, when subject to the same boundary
conditions, reach a state having a sweady average granular
temperature that is determined by the balance berween the
rate of energy pumped into the system by the shearing and
the rate at which energy is dissipated by the collisions. We
have found that the steady average granular temperature, T,
which is defined as one-half the average of the square of the
flucruating velocities of all particles in the system, can be
closely fied by the following empirical relation:

e

/1 ]
T_A_F!_(\l_—?+3" (1)

Here A=0.080 and B=—0.54 are dimensionless constants.
The ratio of¥ is proportional to the mean-free path in a ho-
mogeneous system of solid fraction ¥. Figure 1 illustrates
this relationship by comparing the values of T in systems
charscterized by different values of €. The straight line
through the data points in Fig. 1 is the dilute limit form of
the relationship between T and & as derived by Jenkins and
Richman in Ref. 10. Following Eq. (70) and Eq. (71) in Ref.
10, this dilute limit reladonship is

i yor( 1 7
(1+8)(7-38)° ¥ \1-¢ E)‘ @

!
It is easy to check that Eq. (2) and Eq. (1) yield close results
as & approaches unity. It should be noted that the theory in
Ref. 10 considers a spatially uniform and ume-independent
shear flow, whereas the actal flow is highly nonuniform and
it exhibits time-dependent microstructures. In view of this
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FIG. 1. Tbe average temperature, T, vs 1/(1—&%). The data are obtained
from systems whose perametcrs other than & are given by A=200 000,
U=100, L,=L,=1, ad ¥=0.05. The solid line through the data points is
the prediction of the generalized Gaussian theory of Jenkins and Richman,

fact, the agreement of the result for the average temperamre
with the predictions of Ref. 10 is somewhat surprising. It
would be interesting to find out which other average quant-
tes are unaffected by the existence of microstructures (and
why).

In the rest of this section we¢ wish to present a deuailed
A~scription of our findings for a specific, though typical,

wred system. The parameters of the system that we have
.osén are given by =06, N=200000, U=100,
L.=L,=1, and ¥=0.05. This system is dilute and highly
inslastic and will henceforth be referred 1o as System 1.

The manner in which the various macrofields are com-
puted from data obtained from the simulation is as follows.
The density field, p(r), is defined (in a rather usual way) by
partitioning the flow domain into an array of 100X 100 cells
and counting the number of particles in each cell (the par-
ticles are assumed to have unit mass), The position r is taken
to be the position vector of the center of the cell. The mac-
roscopic velocity field, V(r), is obtained by computing the
ratio of the total momentum to the total mass in each cell,
The granular temperature (or flucnating energy density) in a
cell is defined ss T(r)mX[v~V(r)]*). where v denotes the
velocity of a particle in the cell and {---) denotes an average
over all particles in the cell.

Next, we define the swess tensor, 7(r), which is a sum of
a “kinetic’’ contribution that accounts for the transport of
momentum as the particles move and a **collisional’’ contri-
bution that accounts fer the transfer of momenwum as the
partdcles collide.”®!! For a given configuration, the a8 com-
ponent of the average Kinetic stress tensor is given by

k)
X(r) = p(r){v ,vg), wherev, = v, — V,(r). The producv.&

(vouge) is computed using the identity (ué,u;,) = {vavg)
— {va){vp). The collisional stress tensor"** is computed as
follows. Let J denote the impulse transfer in a binary colli-

«inn (i.e., the magnitude of the change in the momentum of
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FIG. 2. Panel (a): the global flatnzss of the distribution of flusnuating ve-
locities for System [ versus the accumulared aumber of collisions per per-
dele, ¢, in the system. Panel (b): the average temperature as a function af e.

each of the colliding particles), Kk a unit vector pointing from
the center of one of the colliding particles to the center of the
particle it collides with. The collisional conuibution to the
stress tensor, £(r), is T.= 07 ALZ e K, Where the sum
is over collisions occurring within 2 cell of area A in a time
interval ¢ (i.e.. an average of the dyadic product Jk over
these collisions). The total suress temsor is then given by
A=A )+ ). _

The global average granular emperature, T (meationed
above), is defined as the average of T(r) over all cells in the
system. The variation of T with time can be used to gauge
the convergence of the sysiem to a steady state, since T

FIG. 3. The deasity field for Systemm [ al a Ume comesponding o 100
collisicns per panicle following the initial condition. The shade code is
lighter gray for hugher densitics and darker for lower densiues.
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FIG. 4. Streamwise-averaged flow properties for System L (a) V, : (b) V,; (¢) density, pi (d) tempemarure, T; (¢) rms deviation, r, from the cell center of x
coordinates of particles in a cell versus the position of the cell in a spanwise column (the dashed line corresponds to the value for 2 homogeoegus distributon

of particles); (f) the number of particles in a cell, NV, versus the cell potilion in the same column as in (). Notice that all profiles are essentially umifo!

the relative flucruartions being very small.

approaches, and then fluctuates around, a steady value when
this occurs (ef. Fig. 2). The measure of time in Fig. 2 is the
accumulated number of collisions per particle, denoted by e.
Another useful global diagnostic is the flamess (kurtosis), «,
of the distribddon of flucruating velocities, which is defined
as k= v' Yy
all particles in
System I as it is driven from its initial condition to a statis-

tically steady state is shown in Fig. 2, The value of x at ¢=0
is 2, as expected for a Maxwellian diswibution; the steady-
state value, which is achieved after about ten collisions per

particle, is significantly different from 2.

A shaded density contour plot at a ime corresponding to
the lapse of 100 collisions per partcle is shown in Fig. 3.
The brightest shade in this plot corresponds to a value of the
“-nsity at approximately 80% of the full range of densities
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observed in the flow and the darkest shade to 20% of M this
range. The intermediate grey shades are ‘‘equally spaced.”
The exmreme values of the density are approximately =50%
of the average value. The values of T and the flatness, x, are
statistically stationary at this time, and thus the flow is as-
sumed to have converged to a startistically stadonary state.
The flow is really not locally stationary in time: an ¢xamina-
ton of a movie depicting the dynamics of the system or of
consecutive density plots reveals that clusters of particles
form continually and then merge or break up as they collide
with each other.'® Every single snapshot, such as the )¢
density field presented in Fig. 3,reveals that the density is
highly inhomogeneous. Despite the spatioternporal variations
in the density, the profile of the steamwise velocity field
remains linear across the domain, as shown in Fig. 4(a), at all
times. In addition, by computing the corresponding vorticity
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FIG. S. The collisional pressure ficld for System [ at a dme comesponding to
100 collitions per penticle following the initial condition. The shade code Is
lighter gray for higher pressures and darker for lower pressurcs. Notice the
brigater strip near the centerline.

field, we have found that the velocity field corresponds ev-
erywhere to a highly uniform shear field. Some other
streamwise-averaged properties, such as the temperature and
number density profiles, are shown in Fig. 4. These profiles
show variadons characterized by distinct Jength scales on an
essentially flat background.

Another quantity, depicted in Fig. 4(c), is a measure of

. uniformity of the distribution of the particles in the cells
defined in the coarse-graining partition of the flow domain.
This is the root-mean-square deviadon, r, of the x coordi-
nates of the particles in a cell from the geometric center of
the cell and it is defined as (U/n)Z,(x;—xp)*, where n is
the number of particles in the cell, x; is the x coordinate of
the ith particle in the cell, xj is the x coordinate of the center
of the cell, and { is taken over all paricles in the cell. The
value of r for a uniform diswibution is (1A2)¢,, where {, is
the horizontal dimension of the cell. The variation of r along
a vertcal (i.c., spanwise) column of cells is shown in Fig.
4(c) and the variadon of the number of particles in a cell in
the same column is shown in Fig. 4(f). These figures show
that, despite the comparatively large fluctuations in the num-
ber of particles per cell among the cells, r almast never
deviales by more than 10% from its homogeneous value,
This fact indicates that the chosen scale of the coarse grain-
ing cell is just right: large enough to contain a significant
pumber of particles yet small enough for the density to be
practically uniform in the cell.

The collisional and kinetic pressure fields for System I at
the same time 2s the corresponding to the density field are
shown in Fig. 5 and Fig. 6, respectively. The grey scale
resolution in these figures is the same as in Fig. 3. The col-
lisional and kinetic pressurcs are defined as one-half the
traces of the corresponding stress tensors. A correlation
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F1G. 6. The kineric pressure field for System I at a time corresponding to
100 collisions per particle following the initial condition. The shade code is
lighter gray for higher pressures and darker for lower pressures.

analysis of the dara reveals that regions of higher density
correspond to lower temperatures and pressures. This fact
can be explained as being a result of the competition be-
tween collisional cooling'?'> (a mechanism that has been
shown to lead to the emcrgence of clusters'>® of low granu-
lar temperature and relatively high density) and heating by
the shear flow. The combined action of the two is responsible
for arresting the clustering process when the value of the
density reaches a certain (‘‘compromise’’) level, a similar
statement holding for the temperature.

Note the bright spots (higher collisional pressures) near
the centerline of Fig. 5. This phenomenon is a result of a
symmertry breaking effect (characterizing Lees—Edwards sys-
terns) that is explained below. The density disiwribution and
the (thermal) distribution of flucrating velocities (as well as
of the relative velocities of colliding particles) are essentially
independent of the vertical distance, [y|. from the
centerline—as expected in a Lees—Edwards system. This
means that the mean-free time (i.e., the time berween con-
secutive collisions of a particle) is practically independent of
the y coordinate. The particles near the g¢nterline (y=0)
have near zero average velocity, their speeds are maj.n.ly ther-
mal and the directions of their velocities are nearly isotropic,
The mean-free path near the cenerline is small with respect
to the system size (and its magnitude is well approximated
by the standard result of kinetic theory (1/na,), where n is
the number density and g, is the total collisional cross sec-
tion). In contrast, for large enough values of |y| the velocity
of a typical particle is composed of a large average part and
a relatively small (the same as for y=0) thermal part (hence
it is *"supersonic’’). Thus partcles situated far from the cen-
terline move rapidly (and essentially in the *x direcdon) and
their mean-free paths (performed during a mean-free rime,
which is practically the same at all values of y) are far larger

1. Galghirsch and M-L. Tan 5

\> V/, ; ( se Méﬂ“éwf’f/

Pl r 1

ST Y TOEgAH 3901 H8LHD B2: 11

LERT-C2-NGI



than those corresponding to particles near the centerline.
These rapid particles can maverse the ¢ntire computational
. enclosure without experiencing a collision. This conclusion

corroborated by our numerical findings. It follows that

.ile the system near the centerline can be considered 0 be
‘fully macroscopic (X system size far larger than the mean-
free path), this is not the case far enough from the centerline.
This symmetry breakdown of the Lees—Edwards boundary
conditions is not peculiar to granular systems alone; we have
checked that it shows up in elastic systems as well. There,
since the system heats up in time, the whole system becomes
subseni¢ after some time and the effect disappears. In a
granular sysiem the average temperature reaches a steady
value and the above effect persists at all times. A detailed
analysis of this symmeuy breaking effect is relegated to an-
other publication.

1. DETERMINATION OF THE SINGLE-PARTICLE
DISTRIBUTION FUNCTION

In this section, we present a new algorithm that deter-
mines the single-particle distribution function from data ob-
tained in the simulations. This functon is denoted by
fi{r,vi), where r and v depote the position and flucruating
velocity, respectvely, and ¢ denotes the time. The algorithm
is based on the observaton that a monotenic integral of a
noisy positive-definite-quantity is comparatively less suscep-
tible to distortion by noisc and poor statistics than the quan-
tity itself and it may thus be fimed more readily by smooth
functions. This integral is consmucted from data, then fined
to an appropriate smooth function, which is subsequenily
“fferentiated. The resulting function is still smooth and can

fined again to a different functonal form that is more
“convenient than the onre used in the first fit (i.e., an exponen-
tial of a function; cf. below).

A. The algorithm

Since the flow is statistically stationary in
time—f, (r,v;z) is not an explicit function of time. It is well
known that the single-particle dismibution function can be
represented as filrv) =G &r—1,)&v—v,)), where r; and
v, are the position and velocity of the ith particle and (-++)
denotes an average over a statistical ensemble of systems
characterized by the same parameters as the one of interest
in contrast to Sec. 11 B in which (---) denotes an average

er particles in'p cell). The funcden f, obeys the normal-
i (o) dy=C"  &r—r))=p(r) and
, where p(r) is the number density; the
tegration over velocity and the sub-
ation over the coordinates. Since the
esponds to linear shear, it is reason-
on the position r through the
local density, p(r), the 1 temperatre, T(r), and the local
mean velocity, V(r). Also, f\should depend on V(r) through
the differcnce v—V(r). All in\all, we assume that f, can be
writen as f,[p(r).7(),v 1= N o(r).T(r),y—V(r)]. Notice
that £ is assumed not to depend¢xplicitly on the gradients
of the velocity, temperature, and denyjty fields. This does not
imply that f"' does not depend on thesg gradients; rather, it
' by the numerical

J S (e v)dvd
subscript V den
seript r denotes Int
mean velocity field ¢
able to assume that f|
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results) that in the steady state considered here there is 2
one-to-one correspondence between the values of the hydro-
dynamic fields and their gradients, hence ) depends implic-
itly on the latter, Since the values of the density and tem-
perature are taken to determine the values of their gradients,
a soong correlation between the distributions of these fields
and their gradients is implied. The physical basis for this is
the particular soucture of the considered flow: A point in the
flow is either inside a cluster or a dilute region, or it is at the
*“*interface’’ berween a cluster and the dilute region immedi-
ately surrounding it. In each case, the density and tempera-
ture ar a given point as well as their gradients at that point
are (practically) determined by the type of énvironment in
which this point resides. One of these gradients, the shear
rate, is found to be highly uniform in the system (cf. Sec.
I B) and it is considered to be a fixed parameter of the
system, 7. Clearly f! depends also on the other (global)
parameters defining the system; this dependence is not ex-
plicidy spelled ocut for the sake of notational simplicity.

It follows that f! can be determined, for given values of
the density p=p, and temperatre T=7,, by collecting sta-
tistics in regions of the flow whose density and temperature
are simultancously py and Ty, respectively. In practice, one
has to define small windows in the density and temperature
that are centered around predetermined values of these quan-
tities so that statistically significant results can be obtained.
The sampling procedure consists of the following steps: (1)
The system is divided into cells and the emperature and
density in each cell is determined, as explained in Sec. I B;
(2) the cells whose temperature and density lie within the
predetermined windows are identified; (3) a process of *‘bin-
ning'' the fluemating velocities of the particles in these cells,
in terms of the norms and polar angles (relative to the
sreamwise direction) of these velocities, is performed. The
information obtained from the binning process is used as
described below.

Let Q,, r, denote the total area of the cells whose den-
sity lies within a window around py and T,. Let $(pq,75)
denote this set of cells. Also let f'! denote the numerical
approximation of £ given by

1)
Qﬁo.?’o IS{N.TQ)ﬂ

X[p(r),T(r),v—V(r))dr,

< 1

 Eeo-To

FVpo.To.v~V(r)]=

(3)

N

J‘ SCPo.ToJ"Zl

X&Hv— v‘-)dr> ;

Q) S(r—r;)

(4)

5{\’-7")) .
(s)

The integrals in Eq. (3) and Eq. (4) extend over S(pg.Tp). as
denoted above. As mendoned, (:-') denotes an average over
an eusemble of realizations; in practice it means averaging
over a series of snapshots of the system. The area Q,,n.:.-o is

1
( ﬂﬂo‘ro i e-s(Pa -Tu)
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included in the ensemble average because it may vary from

one system to another in the ensemble. For notational sim-

plicity, we drop the subscript 0 in py and in Tg and introduce

“NpglQ, 1. Where Ny ¢ is the total number of particles in

s of density p and temperature T. For narrow enough
windows it follows that

AUry T.ov—Vi =
eI v=V(r)] p<Np.Ti'E5(p-ﬂ

(v=v;) > . O]
Letv] = v; = V(r;) denote the fluctuating component of the

velocity of particle i. It follows that £ can be rewritten as
follows:

f‘”(p.T.?)=p<

It is convenient to define

ﬁ”(ﬂ.?:")’(

Nor 16501

a(v—v:a>. @

A
1
6(?—7;) Ew

5+

Npozicsian

Notice that £ is normalized © unity. The cumulative dis-
tribution function for a two-dimensional system is defined by

v 8
h(u.ﬂ)i-‘j FNv' . e’ du' de’, 9
v'=0Jg' =0

where we have used polar coo;;.natcs for v, and the depen-
dence on p and T is implicitlyassumed for notaticnal con-
venience. Clearly, 2(v.6) is proportionsl to the number of
particles whose fluctuating velocity has a magnitude less
than v and a direction angle between 0 and 8. Obtaining this
ntity from the data is merely a matter of counting. Since
normalization  for B dp [ haslar gty
xX(v',8v" dv' 46’ 1 iy follo h(=2m)=1. Two
further observations may be re: the derivative of
h(u, ) with respect to 6, hy(v,6) = I:’;Jm(v’,é‘)u' duv’
is periodic in @ since f')(v,8) is periodic in 6. Also. it is
obvious that for small enocugh values of v, the function A, is
given, to leading order in v, by v?X(a function of 6). We
make use of the first observation to write k, as a Fourier
series:

—_—

hov,8)=co(v)+ 20 e (v)exp(inf).

ne

(10)

Integration of Eq. (10) with respect to 8 yields

Jouits a0=3, ;

y @)= 'de' = i
h(v,8) r=°h, d P ca(v)+eolv) g
exp(in8)

- —

2 eaw) = ()
Thus k(v,8) may be expressed as a sum of terms that are
independent of 6, a term that is linear in 6 and terms that are
periodic in 8. Nodce that by Eq. (9), A(v,0)=0 and by Eq.
(11), A(v2m)—A@.0)=h(v,2m)=27ce(v). It follows
from Eq. (9) and Eq. (11) that the double derivadve of # with
respect to the angle 8 and the velocity v can be expressed as

“allows: h,s(v,8) =uf (v, ) =@, (v) + Ug,(6.0), where
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[

[ coor JM‘)

a1

in8
ditloin S gy 20RO (12)
n#Ed in
R(2m,0)
e(v)= T =¢o(v). (13)

Once A(v,8) is obtained from data (by counting, as
mentioned), ¢{v) may then be computed using Eq. (13), and
YA6,v) can be obtained from the identity

O Csc& Mi #=lw
w(d,u)=&(v.0)—2-;Ja=u h(v,0)d 6+ (m=8)e(v),

(14)
which follows from Egs. {11) and (12) by using the fact that
the average of the last term on the rhs of Eq. (11) over the
full range of angles vanishes. It is easy to check that ¥ as
given by Eq. (14) is periodic in 6, as it should be. Once
h(v,8) is measured, we can use the above expressions to
obtain ¢(v) and Kv.d) whence f£)(v,8) is deduced.

We have found, on the basis of the data we obtained
from the simulations, that the functions ¢{v) and {6,uv) can
be closely fitted by the functions ¢*(v) and ¢*(6v), respec-
tively, where

{P:(U)ﬂlﬂ%ﬂl' (15)
4 a
vcv,e>=§1 A, (v)sin[2p(6+B)], (16)
with
4
.1'(1.:)5'"2__2 au™, (17)

AP(U)Eap{l—exp[—Qp(U)]}- (18)

6
0 ()= 3, dpmi™, (19)
m=2

where J(v) is of quartic erder in v, Q,(v) are polynomials
of sixth order in v, and a;, is the asymptotic value of A, (v)
for large v. The reason only e¢ven multiples of & appear in
Eq. (16) is the **ar rotation’” symmetry obeyed by the shear
flow. The expansions in Eq. (17) and Eq. (19) start with
m=2 since (as mentioned above) h , is proportional to v? for
small values of v. The number of terms in the truncated sine
series in Eq. (16) is determined by requiring the fit 10 be
accurate to within 1% for large values of v and to within 5%
for small values of v. The error tolerance level is relaxed for
small values of v because the numerical data for these values
tend to be noiser—a fact that is to be expected since the
cumuladve sampling technique used in the algorithm im-
proves the statistics at moderate values of v but is not as
effective for small v. For large v, the accuracy can be main-
tained since the numerical data tend to an asymptouc func-
tional form.

The value of the phase 8 is found to depend on p, T, and
phs of #(v,8) vs v for several values of 8 are shown
Fig. 7. A graph of J(v) and its fit, Eq. (17), is shown in
8, and graphs of Av,6) along with the fit, Eqg. (16), is

Goldhirseh and M-L. Tan
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FIG. 7. The cumulative distribution function A(v,8) vs v for values of
f=nw4, n=12...8. comesponding to the curves (2)-(h), respectively. No-
uce that A(v, 8) iz smooth and that it increases monotonically with v and 6.
The data correspond to System [, and the windows in p and T are
(2.8=0.2) 10%/unit area and 0.11=0.0075, respectively. The average tem-
peramre, T, for the system is 0.15.

shown in Fig. 9. These graphs are derived from data taken
from a time series of 20 configuradons of System I sampled
at times separated by inzervals corresponding to the accumu-
lation of one collision per particle in the system.

Next, a fit to k4 is obtained by differentiating the func-
tions in Eq. (15) and in Eq. (16). The result, which is written
ashty(u.8) = @F(v) + Y5 8,v), is referred to below as the

‘once-firted’’ approximation of the distribution function;
that is, we define f{1* = h¥,(v, 8)/v, where the once-starred
quantities refer w tesults of the fining procedure. The next
step is to fit the function —log(f"*) by another analytic
function so as to obtain a form that is similar to those used in
the kinetic theory of gases (i.e., one that is the exponential
function of an expression in the velocity). We have found

v

FIG. 8. The J(v) (points) and ijts fit (solid line) given by Eq. (17). The
cumulatve dismbution, A(u, ), from which this graph is derived, is shown
'a Fig. 7.
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PIG. 9. The periodic part, Wv.8), of the function A(v,&) shown in Fig. 7,
versus @ for the values of v: 02, 0.4, 0.6, 0.8, 1.2, 2.0, corresponding 1o the
sets of curves (a)=(f), respectively. The points comesponad to the data and
olid curves are given by Eq. (16). Notice that (v, 6) crosses the 8 axis at
the same vahues of @ for different v.

that the following expression fumishes a close fit to
_log(;{!)l): __log(ﬁl)xx)=b(0)(6}+b(1)(6)v+b(2](9)u2'
where the coefficients ¥, i=0,1,2, are functions of 6. The
double-star superscript in ff** indicates that this function is
a “‘second fit"" to the “‘first fit,”" FU* The ‘rwice-fited"
approximation to the single-particle distribution function is
thus

0, 6:0,7.8)=pfl)** = p exp[ -~ b%(8;p,7,5")
— b1 6;p,7,& )u =b'?
X(6:p.T,&)v?), (20)

in which we have made explicit the dependence on the mac-
rofields and the parameters of the system. As 7 is periodic
in @ with period 1, so are the functions »@, b, and b®. It
follows that these coefficients can be expanded in a sine
series:

bO%(6,p,T,&)=b5"*(p,T,&)
6
-4-121 bY)*(p.T,&)sin{2j[ 6+ &

x(p.T,€)]}. i=012. (21)

In the above expansion, the amplitudes 53)* and phase shifts
&, depend on p, T, and & Note that the set of phase shifts &;
is the same for all 5%, {=0,1,2, as expected from the *‘‘ro-
tation by ="' symmetry of the flow. A graph of &, vs T at
fixed p is shown in Fig. 10. As indicated in Eq. (21), the
twuncation of the series to ouly six sine harmonics is suffi-
cient to reproduce the 5's accurately. The quality of the fit
b{I* 5 the corresponding b that were obtained from the
data is demonstrated in Fig. 11. The zeroth-order amplimudes,
b{’*, of this fit, i.e., the mean values of &%, are shown
versus T at fixed p in Fig. 12. The points shown are nondi-
mensionalized, as explained in the figure caption. It is useful

I. Goldhirsch and M-L. Tan
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FIG. 10. Phase shifts &;;, j=1...6, comesponding to A, B, ¢, A, 0, and
O, respectively, versus T for p=2.8%10%,

to note that the corresponding graph for akk-an ¢lastic system
in a state of equilibrium would be given by 2T6%'=1 and

V2Th P =0.
An addidonal assessment of the quality of these fits can

]

j v® cos? 8F*(v,0)dv 48
f{k)*(p.r}z
ju’ cos @ sin 67V %(v ,8)dv d6

b
“

FIG. |1. The cocficients 57, i=0,1,2, denoted by +. =, and X, retpec-
tively, versus 8 for I=0.11 and p=2.8X10", The solid curves through the
data poims are given by Eq. (21).
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I v? sin? 67V (v,6)dv d@
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FIG. 12. Nondimensionalized zeroth-order amplitudes, b7, V2T5Y . and
2768, comesponding to A, B, and [, respecdvely, versus T for
p'=2.8><105.

be obtained by comparing the kinctic smesses calculated by
using f'* and fl!** Let

#

f v? cos 4 sin 8f*(v,8)dv d@

, (22)

and let 7Y% * (5 T) be defined in a similar way by replacing
f Wx py fN*x in Eq. (22). The integrations in Eq. (22) are
over all values of v (where u=0) and 6. The values of #*
and 7¥** can also be compared to the value of (. 7),
i.e. the stress tensor that is obtained directly from numerical
data.

Figure 13 shows the traces of 7, #8* and #¥¥* vs T
at fixed p. The value of Tr(#5*) is seen to be very close to
Tr(#*), the discrepancy berween the two values being less
than 1%. This should obviously be so since the comparison
is made between the data (as represented by 7% after coarse-
graining) and a best possible functional fit (i.e., 7#5°*) that is
not subject to any phenomenological constraint. When
AO*% \which is computed from a physically plausible form
for £V given by Eq. (20), is compared to ¥, the discrep-
ancy is found to be about 5%. This discrepancy appears to be
of a systematic natmre and is due to the faet that for large
values of v, f'** yunderestimates fAV*.
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FIG. 13. Comperison of Tr(r%?), TH(#*'*), and Tr(+*'**), comesponding ©
the points &, O, and O, respectively, for T=0.11 and p=2.8%10%

IV. FORM AND PARAMETER DEPENDENCE OF THE
DISTRIBUTION FUNCTION

The accuracy of the fit for f, obtained in Sec. IIl de-
pends on the amount of statistics collected: the more par-
ticles used in the simulation and the more configurations
analyzed, the benter the fit. The paramectric dependence can
be determined, for example, by expanding b%!* for each i

nd each j in powers of T with coefficients that depend on p
~and £, and then determining these coefficients by fitting the
data, Since the variation of T in the flow for £ not too close
to zero is not large, a linear or quadratic dependence in T
may be sufficient for the fit. We have found that linear fits
are sufficient for the cases of &% * vs T (Fig. 12) and for
b$°* vs.p (Fig. 14). The dependence of the amplitudes

" - - 5 o ¥
Swi0t 2104 2.5x10% Jx10%

G’F —
I VR S =
5

v

F1G. 14. Nondimensionalized reroth-order amplitudes, 6§, v2T55Y, and
276§", corresponding to A, B and O, respectively. versus p for 7=0.11,
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FIG. 15, The dimensionless ratio (557*)%/ 55 vs & For each &, this ratio
is computed for different values of p (where p®1.6X10%unit are

2,0X 10°/mmit ares, 2.4X 10%/unit area, and 2.8 X 10%/imit area, corresponding
to the points A, B, A, and (0. respectively) and for the value of T that
corresponds to the average tempernature in the system with the given value of
¢. The externsg] parameters other than & arc the same 2s thoss of System L

b‘,‘}* for j>0 (i.e., the amplitudes beyond the zeroth order)
on the parameters of the problem is more complex than that
of 5§’* and will not be presented here.

Figure 15 depicts the dimensionless ratio
(b5*)2bEP* vs & for several values of p and for a fixed
value of T that corresponds to the average temperature in the
systern (characterized by the given value of &), Figure 15
indicates that, relative to the size of the quadratic coefficient,
b{* | the size of the linear coefficient, b3 '* | is larger, the
smaller &; it decreases as & increases and it tends to zero as &
approaches the value 1, as one expects in the elastic limir.
When & is not close to unity and the flow is highly inhomo-
geneous, regions with different characteristic values of the
fluctuating speed coexist in the same statistcal steady state
(in ““dynamic equilibrium'") and therefore the difference be-
tween the values of 5" commesponding to these regions can
be large. The amplitudes of the higher harmonics in 5,
i=0,1,2,-2ls0 increase as & becomes smaller, indicating that
the flow is more anisotropic as well. These higher harmonics
disappear as ¢ tends to 1.

V. CONCLUSION

The form of £V obtained in this work is significantly
different from the ones assumed in existing kinetic theories
of granular flows, These distributions are analytic in the Car-
tesian components of the velocity and have simple angular
dependences, The form of £, which we have determined, is
both nonanalytic in these compenents and highly anisotropic.
Specifically, this form, while not containing, in the exponent,
powers of the fluctuating speed, v, beyond the sacond (as in
previous results), does contain a linear power of v. The lin-
ear power renders the function nonanalytic in the Cartesian
components of v. Moreover, the magnitude of the linear co-
efficient, 5'”, in highly inelastic systems is of the same order
as that of the quadratic coefficient, 5, though it is still
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‘HG 16, The talxzad Gaussian distibution for dilute shear flow, ™,
fills *. The O points correspond to A%, while the dathed line
pomo f“’" and the solid Line to [T, All distributions are shown
vcnusu at Bxed =7 and T=0.11.

smaller in size in general. Each of the coefficients b'?,
i=0,1,2, contains a finite number of non-negligible Fourier
comporents implying a rather complicated angular depen-
dence in
A companson of £ with the distribution function for

homogeneous thear lows derived by Jenkins and Richman,'®

0 asgsumed a generalized Gaussian form, is given in Fig.

and Fig. 17. The two-dimensional generalized Gaussian
"‘anisoopic Maxwellian’’) form is

R

3

In(f07), In(10), In(rpm)

Q4

.

FIG. 17. The generalized Gaussian distribution for dilute shear flow, f¥®,
vs £ and fllles Th, (O poiars comrespond to fA17% while the dashed line

f=e and the solid line w0 /™), All disributions are shown
/- versus 6 at fixed v=1.6 and T=0.11.
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\b cof (:,sf""‘ da

T

8T

(23)

1
R) P —=vyv.K L.
fi 2mydet K cxp( 2 vk v).

where the velocity fluctuadon tensor (*‘Reynolds stress’'),
K, is given by

pKEJ-Wf(lJR) dv.
v

In the dilute limit of the generalized Gaussian theory for
shear flow f® assumes the form

(24)

2 ==

log fi®ex — 1_%_ [1+42+AV1+A% sin(26+x)]. (25)
where y=~—tan"'(A), and A depends, in this limit, on &
only. Thus, log fi® contains only a single harmonic in 6
with a phase shift x that depends on & only. The results
presented in this section suggest that the actual single-
particle distribution function has & much richer structure.

ACKNOWLEDGMENTS

It is our pleasure to acknowledge the partial support of
the U.S.-Israel Binational Science Foundation, the National
Science Foundation, the Advanced Research Projects
Agency, and the Office of Naval Rescarch,

'C. S. Campbell, "Rapid granular flows,” Annu. Rev. Fluid Mech, 22, 57
(1990).

Y4 M. Jacger and S. R. Nagel. *
255, 1523 (1992).

"Physics of the graoular state,'' Science

35, R Nagel, ‘‘Inswbilitics in a sand pile,’”” Rev. Mod. Phys, 64, 321
(1992).

‘R. P. Behringer, *'The dynamics of lowing sand,’’ Nonlinear Sci, Today
3,1 (1993).

K. Huner and K. R. Rajagopal, ““On flows of granular mnterials,’’ Con-
tinuum Mech. Thermodyn. 6, 81 (1594).

$0. R. Walton and R. L. Braup, *'Viscosity and temperature calculations
for shearing assemblics of inelastic, frictional disks,”" J. Rheol. 30, 949
(1986).

70. R. Walton and R. L. Beaun, "‘Stress calculatons fot assemblics of
inclastic spheres in uniform shesr,”” Acta Mech. 63, 73 (1986).

*C. S. Campbell and A. Gong. "The smess teator in a two-dimensional
granular shear flow,’’ J, Fluid Mech. 164, 107 (1586).

C. S. Campbell, **The stress tnsor for simple shear flows of a granular
matenal,’" J. Fluid Mech. 203, 449 (1989).

18], T. Jenkins and M. W. Richman, “*Planc simple shear of smooth inelastic
circular disks: The anisotropy of the second mement in the dilute and
dense limits,"” J, Fluid Mech. 192, 313 (1988).

''M. A. Hopkinj and M. Y, Louge, “'Inelastic microstructure in rapid granu-
jar flows of smooth disks,"" Phys. Fluids A 3, 47 (1991).

121, Goldhirsch and G, Zaneti, **Clustering instabillty in dissipative pases,™
Phys. Rev. Lent. 70, 1619 (1993).

1. Goldhirsch, M-L. Tan, and G, Zanetti, ** A molecular dynamical srudy of
granular fluids I: The unforced granular gas dimensions,” J. Sci. Comput.
8, 1 {1993).

14N, Sela and I. Goldhirsch, “*Hydrodynamics of a cne dirnensional granular
medium,'" Phys, Fluids 7, 507 (1995).

“M-L. Tan, “"Microstructures and macrostructures im granular shear
flows,”’ Ph.D. thesis, Princeton University, 1995.

*¥M-.L. Tan and l. Goldhirsch, *‘Intercluster interactions ar
hear flowsr - $OEG e Phys. Fluids, 4 146 (ea Prass T
'’p, C, Johnson, P. Now, and R. Jackson, **Frictionalcollisional equations
of mollon of particulate flows and their applications to chutes,'” J, Fluid

Mech., 210, 501 (1990).

185 McNamara and W. R. Young, “Inelastic collapss and clumping in 2
one~dimensional granular medium,"” Phys, Fluide A 4, 496 (1992).

'?S, McNamers and W, R. Young, **Kineties of & one dimensional granular

1. Goldhirsch and M-L. Tan 11

U OMHJAH 39d 1 H8LED ET:1T

S

LEST-CZ-NYl



21°'d Bl0L

medivm in the quaslelastic limit!* Phys, Plaids A £, 34 (1923).

05, McMNumara, ““Inelsstic collapse in two dimensions,”” Phys. Rev. E 50,
R28 (1994).

Up, K. Haff, “*Grain flow 2s 2 fluid-mechanical phenomencn.” J. Fluid
Mech. 134, 401 (1983).

p_ €. Johnson and R. Iackson, **Frictional-collisional constitutive relations
for granular materials with applications to plane shearing,"" J. Fluid Mech.
176. 67 (1987).

DM. A. Goodmsn 2nd S. C. Cowin, A continum theory for granular
materials,”" Arch. Rat, Mech, Anal. 44, 249 (1972).

). T. Jenking and M. W, Richman, “‘Grad's |3-moment system for s dense
2as of inelastic spheres,’" Arch Rat, Mech, Anal. 87, 355 (1985).

B, T. Jenkins and M. W. Richman, *'Kinetic theory for plane flows of z
dense gas of identical, rough, inelastic, circular disks," Phys. Fluids. 28,
3485 (1985).

#C. K. K Lun, S. B. Savage, D. 1. Jeffrey, and N, Chepumnyi, ' Kinetic
thearies of granular flow: Inelastic particles in a Couente flow and slishely
inelastc pardcles in & genera) flow field, J, Fluid Mech. 140, 223 (1984).

TC. K. K. Lun and S. B. Savage, A simple kinetic theory for granular flow
of rough inelastic spherical particles,”” J. Appl. Mech. 154, 47 (1987),

€. K. K. Lun, “*Kinetic theory for graular flow of dense, slightly inelas-
tic, slighdy rough apheres,” J. Fluid Mech, 223, 539 (1991).

¥A. Goldshiein and M. Shapiro, ‘*Mechanics of collisional moxion
granular materiale, Part |, Geoeral hydrodynamic equations,” J,
Mech. 282, 75 (1995).

P, Goldreich and S. Tremaine, "*The velocity dispersi
rings," learus, 34, 227 (1978).

G oLDHIRScH

—

OF NORMAL
RAPT D

Subm < [led e P

Phys. Fluids, Vol. 8, No. 8, June 1996

STRES
GRANOUL AR

TN B

-

& 1, Doyle and M. Massoudi, **A theory for granular marcrials cxhibiting
normal strest effects based on Enskog's dence gas theory.'” Int J, Eng,

Sci, 28, 1261 (1990). O g
1, o N. Sela, GwcnnAn of normal stress differences in
Aapidgranular s, submitted to Phys. Rev, Lert

MS. Chapman and T. G. Cowling, The Maskernarical Theory of Nonuniform
Gases, 3rd ed. (Cambeidge University Press. 1970).

*M. A. Hopkins sad H. H. Shen, “"A Mon-Carlo solution for rapidly
shearing granular flows based on kinetic theory of denge gases,’” J, Fluid
Mech. 244, 477 (1992).

¥A. W. Lees and S. P. BEdwards, *The computer snudy of mansport pro-
cesses under extreme conditions. ' J. Phys. C. Solid Phys. 8, 1921 {(1972).

Y. H. Taguchi and . Talayasu, “*A set of hard spheres with tangential
inelastic collisions As a model of granular maner: 1/f™ fuctuations, non-

0 2nd convective motion,”' submined 10 Phys. Rev,

Y. H. Taguchd! **Turbulent namre of powder flow in vibraid bed: Numeri-
cal study,”” Am. Soc. Mech. Eng. NY 185, 251 (1994).

#5 T , “'Boundary conditions for rapid grasulac flow: Flar, fric-

¥ walls, Trans. ASME: J. Appl. Mech. 59, 120 (1992).

J. W. Duffy, 1. J. Brey, and A. Sanws, *'Some theoretica] aspects of

nonequilibrium simulation methods,'” in Molecular-Dynamics Simularion

of Statistical-Mechanical Systerns: Varenna on Lake Como, Villa Monas-

tero, 23 July-2 Augun 1985, 1986, p294—303.

“D. C. Rapapor. “*The event scheduling problem in moleculsr dynamics
simulation,’’ J. Comput. Phys. 34, 184 (1980).

il 32 sl
Neodd !
AND N.SELA,  ORTGIN
< DLFFERENCES IWN
FLows "

Jét?/d' Rev. z—ffz2f'

1. Goldhirsch and M-L. Tan

CrrsT A 3O T NELIED pC:1IT JEET-CZ2-NHl



