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Abstract

This thesis presents complementary numerical and theoretical studies of 2-dimen-
sional dilute monodisperse systems of inelastic rigid disks under force-free and simple
shearing conditions. The dynamics of these systems are simulated on a large scale
involving O(10°) to O(10°) disks using the ‘event-driven’ algorithm for simulating
molecular dynamics. It is found that even one of the simplest models for granular
‘gases’, viz. a collection of inelastically colliding disks in a periodic force-free en-
closure, exhibits features that are markedly different from those known of molecular
gases. One such feature is the inherent instability of granular systems to inhomo-
geneous fluctuations, leading to the formation of dense clusters of particles of low
kinetic energy within dilute ambients of energetic particles. For a given value of
the coefficient of restitution, € , these clusters are separated by a typical distance
Lo ~ 1/v/1 — &2, where [ is the mean free path in the corresponding homogeneous
system. Clusters are also found in simply sheared (‘Lees-Edwards’) systems, which,
under certain conditions, exhibit a ‘stripwise clustering’ microstructure whose dom-
inant length scale is also given by Lo. These systems additionally exhibit hysteretic
and strongly time-dependent effects, which include the existence of multiple steady
states for a given set of externally imposed parameters and a non-linear cluster scat-
tering mechanism which stabilizes the abovementioned microstructure. A theoretical
framework explaining clustering in free and sheared systems is provided which is
based on equations of motion for granular flows derived elsewhere using kinetic the-
ory. Using this framework, a heuristic model for hysteresis in sheared systems is also
derived. The single-particle velocity distribution function for simply sheared systems
is accurately measured using a cumulative sampling technique which is effective in
filtering noisy simulation data. The measurement shows that the distribution func-
tion has the form of an exponential of a second-order polynomial in the norm of
the fluctuating velocity with angle-dependent coefficients—a form markedly different
from a Gaussian or generalized Gaussian distribution. Numerous diagnostics of free
and sheared granular systems, such as their velocity, density, temperature and stress

distributions, are also presented throughout this work.
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Chapter 1
Introduction

The notion of a granular ‘fluid’[1, 2, 3, 4] arises when a system of macroscopic parti-
cles, such as sand or coal particles, are subject to such rapid deformation that contacts
between individual grains do not endure and their motion is rapidly randomized by
frequent collisions. The behavior of the system is analogous to that of a classical fluid,
except that the collisions are inelastic. It is understood that in a granular system the
effect of the interstitial fluid on the dynamics of the particles can be neglected. It is
emphasized that despite the analogy, granular fluids are rheologically very different
from classical fluids. They exhibit many extraordinary phenomena whose source lies,
in many cases, entirely in the inelasticity of the grain-grain interaction. Thus even an
idealized system of identical rigid spheres interacting inelastically—a system differing
from the classical hard-sphere fluid only in the inelasticity of the interaction—is char-
acterized by extraordinary properties such as clustering instability, hysteresis, phase
transitions, singularities in the collision rate and more.

Perhaps the most significant difference between a granular fluid and a regular one
is the inherent and generic inhomogeneity of the former under virtually any external
conditions. There is a tendency for granular fluids to form dense clusters of particles
of low internal kinetic energy within dilute ambients of energetic particles. These
clusters and other related ‘inelastic microstructure’ are ubiquitous in granular flows.
They have been observed in numerical studies of externally driven and unforced sys-

tems. Among the granular flows studied in this work is the free flow of inelastic disks,
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i.e. a flow that is not subject to any external forcing. Such a flow, even if initially
prepared in a homogeneous state with an isotropic velocity distribution and a vanish-
ing mean velocity, develops readily into a highly inhomogeneous state consisting of
meandering dense particle clusters as the energy is dissipated in inelastic collisions.
The mechanism responsible for clustering is shown in Chapter 2 to be the interac-
tion between long-wavelength hydrodynamic modes and local dissipative processes.
Clusters also form in steady state flows such as highly inelastic simple shear flows
(‘Lees-Edwards’ systems), in which dense anisotropic clusters with a preferred direc-
tion of alignment are created in a complex nonlinear process explained in Chapter
3. Another phenomenon peculiar to granular fluids is the presence of hysteresis lead-
ing to multiple steady states characterized by the same set of external parameters.
This phenomenon is explored in Chapter 4. A accurate study of the single-particle
distribution function, a long-sought quantity central to kinetic theories of granular
flows (cf. Refs. [5, 6, 7, 8] and references therein), is presented in Chapter 5. This
study shows that the distribution function is nonanalytic, highly anisotropic and thus
markedly different from a Gaussian or generalized Gaussian distribution.

There is a multitude of interesting phenomena, in addition to the ones mentioned
above, that are peculiar to granular systems. They include normal stress differences|9,
10], 1/ f noise, nonlinear waves, convection rolls[1], inelastic collapse[11, 12, 13], sensi-
tivity to boundary conditions, segregation[14], layering, heaping[15] and the formation
of extended plugs[16]. Some of these phenomena are surveyed in this chapter. A dis-
cussion of the broader scientific and industrial context in which the main focus of this

work, viz. rapid granular flows, lies is provided here as well.

1.1 The Rheology of Granular Materials

The ‘simple pile of sand’, after having been the subject of a scientific controversy in-
volving a theory of self-organized criticality[17, 18], springs to mind as the archetype
of a granular material. Although real sandpiles are largely static structures except for
the surface flows that occur during an avalanche, they are already characterized by

many properties that typify granular systems, including systems under rapid defor-
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mation. A sandpile is stationary (i.e. no avalanche will occur) as long as its surface
angle is less than the angle of repose, .. The stationarity persists until the slope is
increased beyond the ‘maximum angle of stability’, 6,,. However, because of hystere-
sis real sandpiles are characterized by a range of angles of repose[19] rather than a
single angle. Their hysteretic behavior is due to the lack of ‘thermalization’in the dy-
namics in the absence of energetic external perturbations. Thus a sandpile will retain
a memory of its earlier configuration and its stationary states are history-dependent.

The existence of history-dependent steady states appear to be a common feature
of granular systems. For example, two different flow states may exist in a chute flow
for given values of the chute angle and flow rate[20]. These states correspond to an
‘energetic’ flow and a ‘quiesent’ flow. As shown in Ref. [20], the former is produced
when the flow is initiated by dropping particles from a height into the chute and the
latter by gating the entry of the particles into the chute. The flow state is strongly
dependent on the manner in which it is initiated: the energetic flow is initiated by
particles which are already energetic as they enter the chute, while the quiescent flow
starts as an inert and dense slug of particles that moves slowly into the chute through
a controlled entrance.

The bifurcation into two (or more) markedly different steady states is also observed
in a simple shear flow. The character of the steady state in this case depends strongly
on the initial condition and the application of transient forces. In particular, it
depends on whether the initial flow configuration allows for continual thermalization.
As discussed in Chapter 4, the transition from a thermalized state to a ‘plugged’
state with large but thermally unexcited clusters of particles occurs when the system
is allowed to disengage itself from the source of its forcing or thermal excitation,
viz. the shearing boundaries. If the system remains in contact with its thermalizing
source, a ‘gaseous’ state with a highly time-dependent microstructure is obtained.

Returning to the subject of sandpiles, the fact that avalanches only occur when the
slope, 8, of the sandpile exceeds #,,—otherwise the sandpile is stationary—suggests
that a generalized phase transition occurs at 6 = 6,,. It turns out that the initiation
of an avalanche resembles more a nucleation and growth process than a critical phe-

nomenon, and thus the phase transition is probably of the first order[21]. A process
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that resembles a first-order phase transition also occurs in the decay of a free granular
gas. In this case, as mentioned above, a transition from an energetic homogeneous
state to a highly inhomogeneous state consisting of clusters occurs as the energy is
dissipated in inelastic collisions. The global statistical properties of the two states
are well-defined. The transition is induced by fluctuations and a positive feedback
mechanism involving the interplay of collisional ‘cooling’ and mass aggregation (cf.
Chapter 2).

Other parallels between the properties of a sandpile and those of granular ma-
terials in general can also be drawn. An interesting example is the following: the
free surface of a sandpile may respond in one of the two following ways to a noisy
external pertubation (such as shaking). If the perturbation is of small amplitude,
a collective reorganization or ‘relaxation’ (cf. [18]) of particles within a local group
of particles may occur so that a configuration of lower potential energy is achieved.
This reorganization leads to more efficient filling of voids and hence to a more stable
configuration for the sandpile. If the perturbation is of large amplitude, particles are
ejected individually from their groups(the so-called ‘independent-particle relaxation’
process, cf. Ref. [18]) and travel down the pile. It appears that collective relaxation
may also occur in more complex flows in which particle motions are randomized to a
greater or lesser extent by collisions. In Fig. 1.1, we show the particle configuration
in a hopper in the process of being emptied[16]. A group of particles in a regular
close-packed array can be seen near the exit amid more dilute ambients of energetic
particles. In the chute flow shown in Fig. 1.2, regularly packed piles of particles can
be seen moving along the chute floor[16]. The energetic ambient around a group of
particles serves as the noisy external perturbation that brings about their collective
relaxation to a regular close packing. It appears that regular packings are the norm
rather than random packings, indicating that collective relaxation may be a very
common phenomenon in granular systems.

Granular materials are of course hardly limited to sandpiles and in fact appear in
an extremely wide range of natural and industrial settings. Most terrestrial granular
materials are aggregates of macroscopic solid particles whose typical linear sizes range

from microns for very fine powders to tens of meters for rocks and boulders. These
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Figure 1.1: The particle configuration in a hopper which is being emptied. The flow is
computed using a Runge-Kutta scheme involving an ‘overlap’ algorithm as described
in [16, 22]. Frictional effects and normal restitution involving slight deformability
are accounted for in the algorithm. The flow is driven by gravity pointing vertically
downwards. The particles are colored according to the direction of their velocity as

indicated-in the inset. Notice the dense regular packing of particles near the exit.
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Figure 1.2: The particle configuration in a chute flow of slightly deformable frictional
disks. The direction of the gravitational acceleration is indicated by the arrow in the
upper left corner of the plot. The flow is computed in the same way as the flow shown

in Fig. 1.1. Notice the mounds of regularly packed particles on the chute floor.

materials include fine and relatively uniform particulates, such as pills, grains and
condiments, common in the pharmaceutical and food industries; they also include
irregular bulk solids such as coal, soil and silicates used in the energy and construction
industries. Granular flows also occur in many geological and environmental processes
such as avalanches, pollutant dispersion and the movement of the arctic ice pack.
They may also be relevant in extraterrestrial contexts such as the dynamics of asteriod
belts[23] and interstellar dust, and the coagulation of planetesimal bodies to planets
at the early stage of the development of the solar system.

A granular system would not respond to very weak shear stresses, since they
cannot overcome the frictional ‘bonds’ among the grains. In this case, the system
is elastic at small compressive deformations and is therefore solid-like. Under these
conditions, effects such as arching and formation of stress chains and shear bands][1,
21] are observed. However, the system is not truly a solid since it disintegrates
under tensile stresses and it is plastic at larger deformations. When slightly stronger

stresses are applied, some ‘weak’ bonds in the system could be overcome and some
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blocks of grains may move along slippage planes. Under even stronger stresses, more
frictional bonds are broken and smaller blocks may be set in rapid motion. When the
shear stresses are strong enough, all bonds are broken and the grains are no longer
in permanent contact with each other. They interact mainly through instantaneous
impulsive collisions and their dynamics resembles that of a molecular gas, the main
difference being that the collisions are inelastic. As mentioned earlier, this difference
turns out to be a source of a large number of phenomena distinguishing granular
‘gases’ from regular ones. Some of these phenomena are described in Section 1.2.

In general, a granular system may contain within itself a mixture of solid-like and
fluid-like phases. The former phase is either quasistatic or in uniform bulk motion,
and has low kinetic energy, while the latter phase is rapidly deforming and energetic.
Most granular flows of practical interest are such that the rapidly flowing phase,
which is relatively dilute, will border solid-like quasistatic domains which are dense.
Flows of this kind are observed in silos, chute flows, avalanches, entrainment flows
(pneumatic transport systems[24]), and rotating or Taylor-Couette flows (separation
cyclones[25]). Completely fluidized granular materials exhibit a variety of complex
and, in many cases, strongly time-dependent microstructures such as clusters, layers,
heaps and plugs. They also exhibit multistable and hysteretic behavior under many
conditions. In a nutshell, granular materials are generically inhomogeneous; they are
characterized by complex microstructures; and both their statics and dynamics are

strongly dependent on history, boundary conditions, and particle properties.

1.2 Rapid Granular Flows and Kinetic Theory

In this section, we focus on the granular systems in the rapid flow regime. We give
a brief survey of some of the phenomena that have been observed in these systems,
particularly model systems which are realized numerically in computer simulations.
We have mentioned the tendency of an unforced system to undergo a transition to a
highly heterogeneous state consisting of meandering dense clusters even when the ini-
tial state is statistically homogeneous. We also mentioned the formation of anisotropic

domains of high density in very inelastic shear flows. In a chute flow that has become
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sufficiently energetic after prolonged acceleration, a transition will occur between a
state of uniform bulk motion and another state consisting of separated clusters mov-
ing independently of each other[26, 27]. If the inclination of the chute is small, the
flow can be driven to saturation, i.e. to a state in which the rate of frictional loss of
kinetic energy balances the rate of energy input (through gravitational acceleration)
into the system. When this happens, the clusters may dominate the dynamics of the
system by coalescing into a levitated plug in which most of the mass is concentrated.
In a convection cell in which grains are bound between vertical walls and fluidized by
a horizontal vibrating plate, coherent horizontal motion will develop within a falling
and converging packing of grains near the plate where most of the vertical velocity has
been dissipated in inelastic collisions. The grains near the plate move mostly horizon-
tally and graze each other, and the horizontal motion arises because the inelasticity
has the effect of aligning the velocities of particles undergoing grazing collisions. The
motion may be coherent enough to cause a long horizontal stream of particles to move
along the plate, and a cluster or heap of particles is formed when two such streams
moving in opposite directions merge[15].

Cluster formation appears to be a generic feature not only in granular flows but
also in many other particulate flows in which the effect of the interstitial fluid is not
negligible. Examples of such flows include bidisperse particles sedimenting in a vis-
cous fluid[28, 29], vertically conveyed suspensions[30], low-Reynolds number sheared
suspensions[31], fluidized beds[32, 33, 34] and more[31]. In studies of vertical risers
(cf. e.g. [33] and references therein), an analogy is drawn between the turbulent
motion of the particles as they are conveyed by a rising gas column to the thermal
motion of molecules. This leads to the concept of a ‘granular temperature’ for the
system, i.e. the average fluctuating kinetic energy density associated with the motion
of the particles. It is found that the particles tend to aggregate in regions of low
granular temperature, a fact that is in accord, as we shall amply see in this work,
with our observations of clustering in numerically simulated systems of inelastics disks
and spheres. The clustering processes in colloidal systems also bear an interesting,
and perhaps not entirely superficial, similarity to the those in granular flows. The

insights gained from the study of the latter flows (which are at any rate more ac-
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cessible to numerical simulation) may be useful for the study of the former. In a
sedimenting bidisperse suspension, particles from the same species tend to coalesce in
low-shear and high-velocity vertical streams that are surrounded by a highly sheared
‘lubrication’ layer of interstitial fluid[28]. These streams of particles separate into
smaller streams as the relative velocity between the stream and the lubrication layer
increases. This is reminiscent of the clustering process in a granular flow. A region in
such a flow whose shear rate is lower will have a lower pressure and vice versa. The
region whose shear rate is comparatively lower than the shear rate in an adjoining
region will tend to become denser, and may thus eventually become a cluster, since
particles are driven into it from the adjoining region whose pressure is higher. In
the reverse process, a large cluster may also break up into smaller clusters due to
differential shearing within its interior. The clustering process will be discussed in
detail in Chapter 3.

Many rapid granular flows are found under different parametric conditions to be
in one of two distinctly different states or ‘phases’. These phases will be refered to as
the ‘quasihomogeneous phase’ and the ‘inhomogeneous phase’. The classification is
based on the degree of inhomogeneity in the system. The phase in which the system is
found depends on whether a characteristic intercluster distance can be accomodated
in it. Note that we are speaking of different phases in a rapidly flowing system, i.e.
one that is completely fluidized; clearly, a partially fluidized system may have more
than two phases. The intercluster distance, Lo, is independent of the linear dimension

of the system and is given by
)

e (1.1)

where [ is the mean free path for the corresponding homogeneous flow. A derivation

Lo%

and numerical verification of this relationship relevant to the case of an unforced
granular system is given in Chapter 2. In a nearly elastic system or one with a small
number of particles, Lo is usually larger than the linear dimension of the system.
Therefore 1o clusters can be accomodated in it and clustering effects are absent.
However, the system is still inhomogeneous on the scale of its linear dimension and
is therefore in the quasihomogeneous phase. In a very inelastic system or one with

a large number of particles, dense interspersed clusters are created whose typical
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separation is given by Lo. The system in this case is in the inhomogeneous phase. The
bifurcation into these two phases therefore depends on whether the linear dimension
of the system is larger than L. For a fixed system volume, this statement may also be
cast in terms of the number of particles in the system as whether the number is larger
than a given threshold. We will discuss this relationship in more detail in Chapter
2. We will also present numerical evidence in Chapter 3 to show that it applies to
sheared systems as well.

The above-mentioned classification can be applied to unforced systems of rigid in-
elastic disks and spheres that are allowed to evolve from isotropic and homogeneous
initial states. If the collisions are nearly elastic, a slightly inhomogeneous and per-
sisting sheared configuration will develop after some time in which two thick layers of
particles, which together span the linear dimension of the system, move in opposite
directions. If the collisions are highly inelastic, a highly inhomogeneous state con-
sisting of prominent clusters are formed. Both phases are found to be statistically
well-defined, since they are characterized by global statistical properties, such as the
flatness of the velocity distribution and the average energy decay rate, that are station-
ary in time. The bifurcation also parallels the behavior of a one-dimensional unforced
system in which both stationary or oscillatory (i.e. ‘pulsating’) clusters of particles
can be created depending on the inelasticity and the size of the system[11, 12, 13].

In addition to the phenomenon of clustering, an effect known as ‘inelastic collapse’,
which is related to clustering, has also been observed in unforced systems whose col-
lisions are instantaneous and characterized by a constant coefficient of restitution.
This effect corresponds to a singularity in the dynamics of such systems. It occurs
when a group of particles ‘cools’ so quickly as a result of the dissipative collisions
that they are drawn together faster than the diffusive stresses could pull them apart.
When this happens, an infinite number of collisions may occur in finite time. This
singularity, or ‘inelastic collapse’, has been observed in numerically simulated one-
dimensional unforced systems of rigid point particles [11, 12, 13] and two-dimensional
unforced systems of disks[35]. A simple example of this singularity is that of a ball
bouncing inelastically on a floor, for which one can easily show that the ball comes to

rest after an infinite number of collisions in a time 2u/g(1 — € ), where u is the initial



1.2 Rapid Granular Flows and Kinetic Theory 11

velocity, g the acceleration due to gravity and € the coefficient of restitution. Away
from solid boundaries, inelastic collapse can occur, for example, when two particles
converge on a third that is sandwiched between the two, and the sandwiched particle
bounces back and forth between the two outer particles. The three of them eventually
coalesce in finite time after an infinite number of collisions. In two-dimensional un-
forced systems, contiguous particles embedded within a larger group of particles may
organize themselves into straight chain-like structures in which the inelastic collapse
occurs.

Many theories for rapid granular flows are substantially based on analogies with
the dynamics of molecular fluids. In such a theory due to Haff[4], the equations of
motion are derived phenomenologically and are similar to the Navier-Stokes equations
except for the equation for the granular temperature, i.e. the fluctuating kinetic en-
ergy density. The latter equation is notably different because it contains an energy
sink term that represents the rate of loss of kinetic energy due to inelastic collisions.
Other theories for granular flows are based on continuum mechanical approaches[36],
while still others involve the derivation of constitutive relations on the basis of the
classical kinetic theory of gases. It is assumed in the latter theories that the per-
tinent field variables are the same as those in standard hydrodynamics. A typical
output of these theories[2, 5, 6, 7, 8] (generically refered to as kinetic theories for
granular flow) is a set of macroscopic equations of motion which, like in Haff’s theory,
closely resembles the Navier-Stokes equations except for the temperature equation.
It is assumed in these kinetic theories that the single-particle distribution function is
Gaussian with corrections due to gradients in the intensive variables similar to those
obtained in the Chapman-Enskog expansion[37]. One disadvantage of these theories
is that they predict a vanishing normal stress difference, in contrast with numerical
and experimental results[22].

The normal stress difference, or the so-called ‘anisotropic pressure’, can be ac-
counted for when the single-particle distribution function is assumed to be a gener-
alized Gaussian, as is done in Refs. [38, 39]. The theories derived in Refs. [38, 39]
involve an equation of motion for the second-order tensor of the fluctuating veloc-

ity correlations. This tensor may perhaps more descriptively be called the ‘tensorial
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granular temperature’, and it is the equivalent of the Reynolds stress in hydrody-
namics. The theories involving this quantity have been moderately successful in pre-
dicting results of numerical experiments. Nevertheless, deviations of the numerical
results from theoretical predictions (e.g. deviations of the value of the stress tensor)
have been observed[10], the deviations being particularly pronounced when strong
microstructures are present. These microstructures have the effect of decreasing the
values of the stresses with respect to the values that are expected in the absence of
microstructures. The fact that the kinetic theories based on the generalized Gaussian
distribution function are more successful than those which include only the standard
hydrodynamic variables indicates that the set of macrovariables for which equations
of motion are to be derived should be enlarged by including in it the tensorial granular
temperature.

The deviation of the values of the usual macrovariables, such as the mass and
momentum densities and the stress tensor, from their values predicted by the kinetic
theories can be significant when the system is very large relative to L, given by
(1.1). In this case, the system contains clusters and is highly inhomogeneous. The
deviation is not surprising, since many kinetic theories assume that the system is
void of internal structure and some of them assume that it is isotropic as well. The
theory based on the generalized Gaussian distribution function does account for the
anisotropy in the fluctuating velocity correlations but nonetheless assumes spatial
homogeneity in the flow. The stresses predicted by this theory were compared in
detail in a previous study[40] to those measured in computer simulations. In essence,
the comparison indicates that for a given number of particles and a given average
solid fraction (ratio of volume of particles to total volume), the stresses are weak,
that is, they are much lower than the theoretical value, if the system is very inelastic;
and conversely, they are strong, and closer to the theoretical value, if the system is
nearly elastic. Since clusters are broken up by stresses whose magnitude decrease
with increasing inelasticity, a very inelastic system will contain dense clusters while
a nearly inelastic system will be cluster-free. We will show in Chapter 3 that this
trend is anticipated by (1.1) which may be used to meaningfully organize the data
published in Ref. [40].
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From another perspective, the fact that the dynamics of granular systems are usu-
ally dominated by anisotropic particle clustering also implies that additional macrovari-
ables which account for the anisotropy must be included in any successful kinetic the-
ory of these systems. Indeed, our study presented in Chapter 5 of the single-particle
distribution function for a two-dimensional granular shear flow shows that it has a
highly anisotropic structure. This function has the form exp[bo(6) + b1(8)v + ba(8)v?],
where v is the magnitude of the local fluctuating velocity, 8 is the angle between
the direction of the fluctuating velocity and the streamwise direction, and bg, b1, and
b, are coefficients that depend strongly on §. The presence of the linear term in v
renders the distribution function non-analytic in the Cartesian components of the
fluctuating velocity. It also renders the distribution unrepresentable as a Gaussian
or generalized Gaussian. It has a much more complicated angular structure than
those of the distribution functions that have been assumed in existing kinetic theo-
ries. Its strong angular dependence evidently necessitates the use of an extended set
of macrovariables including not only the standard hydrodynamic variables but also
other variables which account for the angular anisotropy in the flow.

The study of unforced one-dimensional granular systems presented in Ref. [13]
shows that a proper hydrodynamic description of one-dimensional unforced systems
already requires the addition of a hydrodynamic variable that measures the asymme-
try of the single-particle distribution function. We note here that the anisotropy is
present in three-dimensional shear flows as well[16]. In these flows, the dependence
of the single-particle distribution function on the angle between the direction of the
fluctuating velocity and the streamwise direction (i.e. the ‘azimuthal angle’ relative
to the ‘z-axis’ which is taken to coincide with the streamwise direction) is found to
be highly anisotropic, although the dependence on the angle between the fluctuating
velocity and a reference direction normal to the streamwise direction (i.e. the ‘polar
angle’) is found to be weak. The dependence on the ‘azimuthal angle’ appears to
parallel the corresponding dependence on # in the two-dimensional case. In particu-
lar, it is found that only even modes are present in both angular dependences due to
the fact that the simple shear flow has a rotation by 7 symmetry. Given that par-

ticle clusters may have a profound effect on the distribution functions characterizing
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granular flows, an understanding of the dynamics of these clusters will therefore bear

directly on the derivation of kinetic theories for granular flows.

1.3 Molecular Dynamics Simulations: A Minimal-

Model Approach

Unlike conventional fluid dynamics, a unified description of the flow of bulk materials
is difficult to obtain and existing models are strongly dependent on particular material
properties or flow geometries. Until recently, non-invasive experimental diagnostics
are hard to obtain, though it is now possible to non-invasively measure the velocity
and concentration in flows of certain classes of materials using magnetic resonance
imaging techniques[41]. Recent efforts at understanding the fundamental behavior
of granular systems have focused upon the macroscopic behavior of systems of iden-
tical rigid particles whose collisions are governed by simple models involving one or
two coeflicients of restitution. These efforts include the derivation of kinetic theo-
ries (which we have already discussed) and the study of the macroscopic properties
of these systems realized computationally in large-scale computer simulations. The
simulations are usually molecular dynamics (MD) simulations in which the entire set
of coupled equations of motion for the particles are solved using a ‘collision search
and execute’ algorithm. The advantages of large-scale MD simulations are, firstly, the
ability to study the dynamics at a level of detail that cannot be achieved in physical
experiments; secondly, the ease and flexibility with which parametric dependences
may be studied; and thirdly, the minimal-model approach that eliminates reliance
on a specific continuum description whose validity may be questionable. With so-
phisticated algorithms, it is possible to perform MD simulations of granular flows in
complex geometries and at various levels from small systems of ((10%) particles which
are strongly influenced by boundary conditions to multimillion particle systems with
complex internal dynamics.

It is well-known in statistical mechanics that the macroscopic properties of many-
body systems depend only weakly on the particular nature of the microscopic in-

teractions (assuming that the appropriate separation of scales exists in the system).
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As an aside, the fact that the macrodynamical equations of motion do not depend
on the microscopic dynamics is the basis for ‘discrete fluid dynamics’, i.e. numer-
ical schemes for solving the Navier-Stokes equations such as the lattice-gas cellular
automata and related methods which use a discrete and highly stylized underlying
particle dynamics. The particle dynamics retains only enough relevant microscopic
physics to reproduce the requisite macroscopic dynamics of the Navier-Stokes equa-
tions. Following these ideas, we have derived in Ref. [42] a lattice-gas method to
solve macroscopic equations for granular flows. To return to the subject of granular
flows, it is clear that even if the microscopic dynamics are not completely captured
by the interaction model used in the computer simulations or the kinetic theories,
we may still obtain qualitatively correct results on the macroscopic level. In fact, by
studying macroscopic data as a function of microscopic parameters, we may tune the
microscopic parameters to obtain desired macroscopic behavior that matches, say,
the observations in a physical experiment. In this way, we may deduce the values
of the microscopic parameters which are inaccessible to direct measurement in the
experiment. It is also possible to extrapolate the results of the physical experiment
to different set-ups using a ‘properly tuned’ numerical experiment.

The numerical method used in this work is the ‘event-driven’ method which has
proved to be highly efficient in computing the collective dynamics of rigid particles.

This method and its performance are discussed in detail in Appendix A.

1.4 The Rigid-Disk System

Here we define system which is simulated and the various macroscopic diagnostics

that are used throughout this work.

1.4.1 The Model

The systenr consists of N identical smooth rigid disks of unit mass and diameter o
in a rectangular enclosure of size L, x L,. This enclosure is periodically extended in
both the z- and y-directions. The periodic boundary conditions are either applied in

the static frame, in which case no external stresses are exerted on the system, or in the
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Lagrangian frame (corresponding to a given average velocity profile) for shear flow,
in which case the system is sheared by its periodic images. Both types of boundary
conditions are explained in detail in Section 1.4.2. The only allowed interactions in
the system are instantaneous collisions of pairs of disks. The collisions occur either
between two disks lying within the enclosure or between one in the enclosure and
another in a periodic image of the enclosure. The velocity of each disk is constant
between collisions. The collision process is characterized by a constant coefficient of
normal restitution, € , with 0 < € < 1, which, when combined with the conservation
of linear momentum, determines the outcome of the collision. Frictional interactions
are ignored (simulations with frictional degrees of freedom are presented in Appendix
C and Ref. [16]). Let vy and v, be the respective velocities of two disks prior to a
collision and let v and v; be the corresponding velocities immediately following the

collision. A straightforward calculation yields:

, (1+¢€)

vV, = Vi — T(Vm . f()f(
146 PR
vy = va+ (_g—e)(vzl -k)k (1.2)

where vy; = v; — v, and k is the unit vector pointing from the center of disk ‘1’ to

the center of disk ‘2’, at the time of contact (cf. Figure 1.3).

1.4.2 Initial and Boundary Conditions

As already mentioned, two types of boundary conditions are imposed in the simula-
tions. The first corresponds to fully periodic boundary conditions at opposite sides
of the rectangular enclosure, i.e. a particle about to leave one side will reappear at
the other side at an equivalent position with the same velocity. The second type is
the ‘Lees-Edwards’ boundary conditions[43] which were originally employed to study
transport properties of simple fluids. They were also used before in simulations of
granular systems[10, 22, 40, 44]. They lead to a state of simple (linear) shear without
the need to formulate a wall boundary condition—formulating wall boundary condi-
tions for granular flows is a nontrivial problem; see e.g. Ref. [45]. An algorithmic

definition of these boundary conditions, useful for implementation on the computer,
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Figure 1.3: Collision model: w = (v; — v,)/2 is the relative velocity in the center-of-
mass frame and J = Ll*‘2—el(v21 -k)k is the impulse imparted to disk 2 by disk 1. The

impact parameter b, defined as o|k X va1|/|Va1], is a property of the collision.

can be found in [10, 40]. They can also be defined analytically, since, as mentioned,

they correspond to fully periodic boundary conditions applied in the Lagrangian frame
for the shear flow[46].

The Lees-Edwards conditions can be stated as follows: the enclosure containing
the disks is to be regarded as a fluid element sheared by adjacent periodic images
at the top and at the bottom. The geometrical centers of these images move with
speeds £U in opposite directions parallel to the z-axis (see Fig. 1.4). Effectively, the
upper and lower boundaries of the enclosure move with velocities equal to U/2 and
—U/2 respectively. The value of U is given as a parameter of the simulation. The
periodicity in the z-direction is imposed by requiring a particle incident on, say, the
right side to reenter the left side at an equivalent position with the same velocity.
In the y-direction, a particle incident on, say, the bottom boundary reenters the top
boundary at a position that reflects the displacement of the top periodic image. Upon
its reentry, the particle’s horizontal velocity is increased by U, in accordance with the
interpretation that the particle is entering the fluid element from an adjacent faster-
moving element. An analogous protocol applies to particles leaving the top boundary.

The initial condition for the simple shear flow simulation is similar to the one

used in Ref. [40]. It corresponds to the sheared configuration for an elastic hard-disk
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Figure 1.4: The Lees-Edwards boundary condition. The open and solid circles show

the relative positions of the disks and their images respectively.
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gas. To achieve this configuration, the disks are first uniformly distributed inside
the enclosure with velocities drawn from a Gaussian distribution with zero mean
and a variance that corresponds to the desired value of the initial temperature. To
the (random) velocity assigned to each disk, a mean velocity corresponding to the
location of the disk in the enclosure is then added. This mean velocity is taken to
be a linear interpolation between the velocities at the horizontal boundaries, and as
is shown in Chapter 3, the mean velocity profile persists throughout the simulation.
This is a consequence of using the Lees-Edwards boundary condition and a sheared
initial configuration. A mean velocity profile that is not linear can be obtained if
other types of initial conditions are used (cf. Chapter 4). Since the velocities of the
particles are assigned by a random number generator, the total momentum of the
system need not vanish. To assure that the experiment is performed on a system
with no net total momentum, the total initial momentum P of the N particles is
computed and an amount P/N is subtracted from the momentum assigned to each
particle. Next a simulation of the above system with elastic collisions is performed in
order to achieve a state corresponding to that of a sheared molecular gas. After this
is done, the initial configuration is ready and the inelastic simulation is started by
applying the Lees-Edwards boundary condition together with (1.2) to all collisions
following this configuration.

The initial condition for the periodic unforced system is obtained in a similar way

except that a mean velocity is not added to the random velocities of the disks.

1.4.3 Definition of the Macrofields

Here we define the manner in which the most common macrofields are computed
from data obtained from the simulations. Some other less common macrofields and
diagnostics are also used in this work; they are defined as they occur. The density
field, p(r), is defined (in a rather usual way) by partitioning the flow domain into
an array of identical rectangular cells and counting the number of particles in each
cell (the particles are assumed to have unit mass). The position r is taken to be
the position vector of the center of the cell. The macroscopic velocity field, V(r), is

obtained by computing the ratio of the total momentum to the total mass in each
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cell. The granular temperature in a cell is defined as
1 2
I(r) = 5{(v = V() (1.3)
where v denotes the velocity of a particle in the cell, and (---) denotes an average
over all particles in the cell.

Next, we define the stress tensor, 7(r), which is a sum of two contributions: a
‘kinetic’ contribution that accounts for the transport of momentum as the particles
move, and a ‘collisional’ contribution that accounts for the transfer of momentum as
the particles collide [40, 10, 9]. For a given configuration, the kinetic stress tensor is

given by

(1.4)

AO(e)  o(e) ( (w2 (viw) )

(W) ()
where v, = v, — Vi(r) and v, = v, — Vy(r), and (- --) denotes, as before, an average
over all the particles in a cell. A product like (v v}), for example, is computed using
the identity:

(vavy) = (vavy) = (va)(vy). (1.5)
The collisional stress tensor is computed as follows (cf. Section 16.4 in Ref. [37]): A
collision between two rigid disks involves an impulse, J, which is tranfered from, say,
disk 2 to disk 1 over a distance equal to the particle diameter, c. The magnitude of
J is equal to the magnitude of the change in the momentum of each of the colliding
particles, and the direction of J is along k (see Fig. 1.3). Hence in a single collision
an amount of momentum J(k - n) is transfered across a surface whose normal vector
is n as shown in Fig. 1.3. Writing J(k-n) = (Jk) - n, the collisional contribution,
7(9)(r), is obtained by considering collisions occurring within a cell of volume V in a
time interval ¢ and averaging the dyadic product Jk over these collisions:

g

collisions

The total stress tensor is then given by
7(r) = 78 (r) + 7)(r). (1.7)

The kinetic and collisional pressures are defined as one-half the traces of the corre-

sponding stress tensors.
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The global average granular temperature, T', is defined as the average of T(r) over
all cells in the system. The variation of T can be used to gauge the convergence
of the system to a steady state, since T approaches, and then fluctuates around,
an equilibrium value when this occurs. Another useful diagnostic is the flatness

(kurtosis), k, of the distribution of fluctuating velocities, which is defined as

k== (1.8)

where the overbar denotes an average over all particles in the system.

1.5 Goals of this Work

While it is clear that the behavior of a granular fluid can be markedly different from
that of a Newtonian fluid, and that the expectations and intuition gained from the
study of the latter may not apply to the former, the analogy between Newtonian and
granular fluids has been exploited in many theories for granular flows. As mentioned
in Section 1.2, many kinetic theories for granular flows produce macrodynamical
equations of motion which include an equation for the granular temperature that
accounts for the energy dissipated in inelastic collisions, in addition to the usual
equations for the mass and momentum densities. In more sophisticated theories,
an equation is derived for each component of the tensorial granular temperature
(i.e. the second-order tensor moment of the fluctuating velocity). Although these
theories are moderately successful in predicting some results of physical and numerical
experiments, such as the value of the stresses observed in numerical simulations, they
fall short in many respects, most of which have to do with the fact that the effect of
inhomogeneities and microstructures (which occur generically in all granular flows)
are not taken into account. For example, the inelastic microstructure that forms in
a shear flow has a significant effect on the stresses in the flow, but this fact has not
been considered in the above theories.

More fundamentally, the statistical mechanics of a granular fluid lacks the simpli-
fying feature of detailed statistical balance, since its dynamics are not time-reversal

invariant on the level of the grain-grain interaction (i.e. the ‘microscopic’level). More-
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over, the fundamental statistical behavior of even idealized granular systems, such as
those consisting of identical disks or spheres whose collisions are characterized by one
or two coeflicients of restitution, in terms of the probability distribution functions of
particle properties is still largely unknown. Consequently, all existing kinetic theo-
ries simply postulated forms for the single-particle and the two-particle distribution
functions. The forms postulated for the single-particle distribution function include
the usual Gaussian form (Maxwell-Boltzmann distribution), a generalized Gaussian
(the exponential of a quadratic form in the velocity components), and a Gaussian
with a polynomial multiplicative correction (moment expansion). The form for the
two-particle distribution function typically involves a product of two single-particle
distribution functions and a density-dependent correction factor. In severe contrast
to these forms, the single-particle distribution function that we evaluated from simu-
lations of shear flows is proportional to the exponential of a quadratic polynomial in
the speed with strongly angle-dependent coefficients. This function is neither a Gaus-
sian nor a generalized Gaussian. Our studies (presented in Chapter 5) also indicate
that it depends in a non-trivial way on the various macrofields and their gradients.
In view of the rheological differences between granular and regular fluids, the use
of a casual analogy between the two in deriving theories has to be viewed with some
circumspection. Hence we will dispense with this analogy and focus on fundamental
unbiased studies of granular fluids. The goals of our research may be stated as fol-
lows: (1) to inquire into the basic phenomenology of granular flows using an unbiased
minimal-model approach as afforded by molecular dynamics simulations; (2) to accu-
rately determine the fundamental quantities, such as the single-particle distribution
function and multiple-particle statistical characteristics, lying at the foundation of
any statistical theory of granular fluids; and (3) to lead, based on these phenomeno-
logical and statistical studies, towards a successful statistical theory of rapid granular
flows in the dilute to moderately dense regimes. This thesis represents the first steps

taken towards the achievement of these goals.



Chapter 2

Clustering Instability in a Free

Granular Gas

In this chapter, we present detailed results of computer simulations of a monodisperse
collection of inelastic rigid disks in a periodic square enclosure. The model for the
collisions of the disks is given by (1.2), and no external force is applied to the system.
The initial state is taken to have a Maxwell-Boltzmann distribution of the velocities
and a uniform distribution of density. This is numerically achieved by performing a
preliminary simulation in which the collisions are taken to be elastic for a sufficiently
long time so that an equilibrium distribution is established. Then a coefficient of
restitution which is smaller than unity is turned on. The simulations show that in the
course of its energetic ‘decay’, the system undergoes a transition from its homogeneous
initial state to a highly inhomogeneous state consisting of dense meandering clusters.
For a given value of the coefficient of restitution, € , these clusters are separated by
a typical scale Ly ~ I/v/1 — & ?, where [ is the mean free path in the corresponding
homogeneous system. Most of the fluctuating kinetic energy then resides in the
relatively dilute regions which surround the clusters. A system whose linear dimension
is less then Lo does not give rise to clusters; nevertheless, it is inhomogeneous, the
scale of the corresponding inhomogeneity being the longest wavelength allowed by
the system’s size. A theoretical model which explains the clustering phenomenon

is derived, and various macroscopic and microscopic properties of freely decaying

23
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systems are examined.

2.1 Global Characteristics of a Decaying Granu-

lar Gas

As the granular gas decays from its energetic and homogeneous initial state prepared
as described above, a most striking phenomenon occurs which is the transition of the
gas between two markedly different states, viz. an earlier one when the system is still
homogeneous and a later one when it is dehomogenized by the onset of an instability.
These two states are characterized by different though well-defined global properties
such as the decay rate of the total energy and the flatness of the velocity distribution
as well as different local properties. In this section we present some global features
pertaining to two systems of 40000 particles each in a square enclosure. The first
system is nearly elastic (€ = 0.98) and the second is highly inelastic (¢ = 0.6). In
both systems the area fraction of the particles is ¥ = 0.05, and both systems are
prepared in the same initial condition (with the same value of the initial granular
temperature). We shall refer to the nearly elastic system as System I and to the
other system as System II.
At a time corresponding to approximately 300 collisions per particle System I undergoes

a transition, following which the statistically quiescent and homogeneous state (whose
phase space information is shown in Fig. 2.1 is replaced by an inhomogeneous state
composed essentially of layers moving in opposite directions as depicted in Fig. 2.2.
The figure shows the coarsed-grained velocity field superposed on the particle con-
figuration for the system at a time corresponding to 400 collisions per particle, i.e.
at a time corresponding to approximately 100 collisions per particle after the point
of transition. It shows evidence of a shearing motion while the particle configuration
plot shows that the density is lower where the shear rate is higher and vice versa.
The latter observation is in accord with the theoretical argument presented in Section
2.4. Following these considerations the granular temperature is expected to be higher
where the rate of viscous heating (which is proportional to the square of the shear

rate) is higher. Since the pressure increases as the granular temperature is raised, the
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density must decrease due to the motion of particles from high pressure regions to
low pressure regions. This dynamical picture is further corroborated by Figure 2.11
in which scatter-plots of various combinations of the coordinates and velocities of all
the particles in the system are presented.

The inelastic System IT undergoes a transition after about 10 collisions per parti-
cle following the initial state. This number much less than the corresponding number
for System 1. Following the transition, System II exhibits a meandering set of dense
clusters of particles surrounded by a background of low density and relatively high
granular temperature. Animated sequences of the dynamics reveal that the clus-
ters are essentially coherent structures moving at well-defined velocities, sweeping
and shedding trails of particles as they move. Their granular temperature is signifi-
cantly lower than that of the surrounding regions. The coarse-grained velocity field
for System IT (shown superposed on the particle configuration plot) at a time cor-
responding to 100 collisions per particle is presented in Fig. 2.3. A corresponding
temperature contour plot is presented in Fig. 2.4. Notice the prominence of the dense
clusters.

The time evolution of several global properties will now be examined. Fig. 2.5(A)
corresponding to System I depicts the accumulated number of collisions (from ¢ = 0
up to a time t) per particle, c, versus In(¢). Following an initial transient, the average
collision rate per particle, i.e. ¢ = 0c/0t, is proportional to 1/¢ (as expected on the
basis of the kinetic theory; cf. Section 2.4.2), with different proportionality constants
before and after the transition. The decay of the average energy per particle (following
the initial transient) is exponential in ¢ and follows a power law in ¢ (Figures 2.5(B)
and 2.5(C)). The corresponding graphs for System II are shown in Figures 2.5(D),
2.5(E) and 2.5(F). It is shown in Section 2.4.2 that the local granular temperature T
decays exponentially as a function of ¢. The slower decay rate of the energy following
the transition is clearly due to the formation of ‘cooler’ regions of higher density which
contain a large part of the total mass yet contribute only a small part to the global
energy decay rate.

Since there is large-scale coherent motion in these systems, it is necessary to

distinguish the hydrodynamic (or coarse-grained) velocity field from the local fluctu-
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Figure 2.1: Scatter plots showing phase space information of System I following 50
collisions per particle. This corresponds to an early time, i.e. before the mass reor-

ganization. Each point in the plots denotes the property of one particle.
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Figure 2.2: The particle configuration for System I following 400 collisions per particle
on which a coarse-grained velocity field has been superposed. This figure depicts the
system at a time corresponding to 100 collisions per particle after the transition,

which occurred at approximately 300 collisions per particle.
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Figure 2.3: The particle configuration and a superimposed coarse-grained velocity

field for System IT following 100 collisions per particle. The box size is normalized to

unity.
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Figure 2.4: A shaded contour plot of the granular temperature field for
System IT following 100 collisions per particle. The shade code is: darker shades
for low temperatures and lighter shades for high temperatures. It is clear from this

plot and Fig. 2.15 that the clusters are much ‘cooler’ than their surroundings.
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Figure 2.5: Global diagnostics: (A) accumulated number of collisions per particle,
¢, versus time, ¢, in System I (the graph is versus log(t)); (B) the average kinetic
energy per particle, E, versus the accumulated number of collisions per particle,
¢, in System I ; (C) the same quantity as in (B) versus time in System I. The
diagnostics for System IT are show in (D), (E), and (F) corresponding to (A), (B)
and (C) respectively.
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Figure 2.6: Further global diagnostics for System I : (A) the flatness of the fluctuating
velocity distribution versus the accumulated number of collisions per particle, c¢. (B)
the average fluctuation energy per particle versus c. (C) the same quantity as in (B)
versus the true time. (D) and (E) show the time histories of two measures of the

asymmetry in the fluctuating velocity distribution.
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ating velocity. The average kinetic energy per particle, which is proportional to the
mean square velocity, should be distinguished from the granular temperature, which
is proportional to the mean square fluctuating velocity. The decay of the global
average granular temperature, 7', which is defined following (1.7), for System I and
System II is shown in Figures 2.6(C) and 2.7(C) respectively. While (following Fig-
ures 2.5(C) and 2.5(F)) the exponent in the power law in ¢ for the average kinetic
energy per particle as a function of ¢ is smaller after the transition than before it, the
exponent in the power law for T' versus ¢ remains the same. If there were no large-
scale coherent motion in the system, the average kinetic energy per particle would
be equivalent to the average granular temperature. However, coherent motion does
occur in both Systems I and II after the transition (and to a smaller extent before
the transition), and the slower decay of the kinetic energy may be attributed to the
fact that more of the energy is now contained in the coherent part of the motion than
before the transition.

Other global disgnostics shown in Figures 2.6 and 2.7 bear on the distribution of
the fluctuating velocities in the system. The flatness (kurtosis) « of the distribution
shown in Figures 2.6 and 2.7 is defined in (1.8). Were the distribution of fluctuating
velocities Gaussian one would have obtained x = 2 (in two dimensions), as is indeed
the flatness at ¢t = 0 (the initial condition s Gaussian). The value of the flatness
remains close to 2 until the transition, following which it appears to oscillate around
a higher equilibrium value. It is therefore clear that a new distribution function,
whose form is (at least approximately) fixed in time (in spite of the decaying granular
temperature) characterizes the post-transition state. It is reasonable to assume that
the distribution function (modified to correspond to a fixed temperature) is relevant
to nondecaying systems such as sheared ones since spontaneous shear should not give
rise to significantly different results than enforced shear.

Two measures of the asymmetry in the distribution are also provided. These are

the global averages of the z- and y- components of the fluctuating velocity scaled by
—=3/2 -
vz
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Figure 2.7: Further global diagnostics for System II. (A)-(E) correspond to (A)-(E)

respectively in Fig. 2.6.
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2.2 Spectral Analyses of the Macrofields

This section is devoted to the presentation of the Fourier spectra of the mass and
momentum densities for both System I and System II. These spectra are extremely
useful for the elucidation of the dominant scales that appear in systems with different
values of & (and of the other parameters), for the characterization of the microstruc-
ture that exists in inelastic systems as well as for an impartial judgement of cluster
sizes. For the study of the instability mechanism, a series of spectra computed at suc-
cessive times reveals the manner in which the dominant modes evolve and shows the
interplay between the dynamics of the mass and momentum densities. An inspection
of such a series indicates that while both the mass and momentum spectra (for the
same system) show uniformly excited modes at ¢ = 0, one or more low-wavenumber
modes become dominant at ¢ > 0 in the latter before the corresponding modes in
the former become dominant. The dominant momentum modes, which correspond
to shear fluctuations, arise earlier and they drive the motion of the mass, causing the
subsequent growth of the mass modes. The above observation is in accord with the
theoretical analysis presented in Section 2.4.2.

The mass and momentum densities can be represented as

px) = S malx ;)

N
p(x) = Y mv;6(x —x;)

j=1
where x; is the position vector of particle j in the system and §(x — x;) is the delta
function. The corresponding Fourier transforms are:
1 N

Q—Wm]z: exp(zk - x;)

-1

)

—~
el

~
H

1

N
gm E A\ exp(ik : Xj).

=1

Lol
=
I

The wavevectors allowed by the periodic boundary conditions are k = (2p7 /L, 2q7/L,),
where p and ¢ are integers and L, and L, are the dimensions of the system. The

figures in this section show the integrals of |p(k)|? and |5(k)|? over a circle of radius
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|k| in k-space versus k = |k|. In practice, these integrals are computed by summing
the contributions from those allowed modes that lie in the annulus from k to k + Ak.
Since the circumference of a circle whose radius is k is linear in k, one expects these
integrals to be linear in k when equipartition holds.

Figures 2.8 and 2.9 show a series of the mass and momentum spectra for System I at
different times corresponding to 50, 150, 400, and 550 collisions per particle. At 50
collisions per particle (corresponding to Figures 2.8(A) and 2.8(B)), the system is still
homogeneous and equipartition exists. At 150 collisions per particle (corresponding
to Figures 2.8(C) and 2.8(D)), a momentum mode at k = 27 clearly becomes dom-
inant but no mass mode has yet become dominant. By 400 collisions per particle
(corresponding to Figures 2.9(A) and 2.9(B)), the momentum mode at k£ = 27 has
caused the growth of a corresponding mass mode at twice the wavenumber. This
momentum mode reflects a shearing motion in the system, while the mass mode re-
flects the higher concentration of mass near the minima of the square of the shear
rate. Since the mass will aggregate where the rate of viscous heating is minimum,
the shear mode that drives the motion will always produce a mass mode at twice
the wavenumber (the heating function is quadratic in the velocity field; cf. Section
2.4.2). These modes remain dominant up to the longest time checked by the simula-
tion, i.e. 550 collisions per particle, showing that the system continues to remain in a
sheared configuration. Experiments on nearly elastic systems whose aspect ratios are
not equal to one (and which are not presented here in detail) show that the typical
length scale for the (spontaneously) sheared configuration (i.e. the wavelength of the
dominant shear mode), if it occurs, is always given by the longer dimension of the
system. This fact is accounted for by the theory presented in Section 2.4.

The spectra for System IT following 100 collisions per particle are shown in Fig.
2.10. This corresponds to a time that supercedes the transition. The existence of a
multitude of scales, reflecting the increased complexity of the microscopic dynamics,

in this case, is evident.
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Figure 2.8: Spectra for System I : (A) and (B) show R and P, the integrals of |5(k)}?
and |p(k)|? over a circle in k-space (see text), versus k at a time corresponding to 50
collisions per particle. At this time the system is still homogeneous and equipartition
is evident. (C) and (D) show the same quantities respectively following 150 collisions
per particle. Notice here the appearance of a dominant mode in the momentum

spectrum but not in the mass spectrum.
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Figure 2.9: Spectra for System I : (A) and (B) show the mass and momentum spectra
respectively at 400 collisions per particle. The dominant mode in the momentum
spectrum has by now driven the growth of a mass mode at twice the wavenumber.
(C) and (D) show the corresponding spectra at 550 collisions per particle. P and R

are cefined as in Fig. 2.8.
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Figure 2.10: Spectra for System IT: (A) and (B) show the mass and momentum

spectra following 100 collisions per particle, corresponding to a post-transition state

of the system. P and R are defined as in Fig. 2.8.
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2.3 Microscopic Dynamics

The present section is concerned with some microscopic facets of the dynamics of
granular systems as well as with various coarse-grained quantities such as the de-
tailed density, velocity, temperature, and stress fields. The distributions of impact
parameters for the collisions occurring in both systems are examined as well.

Scatter plots for System I , following 50 collisions per particle, which is an early
stage before the organization of the mass were already presented in Figure 2.1. In
Figure 2.11 we present similar plots for a time corresponding to 400 collisions per
particle, which is after the shear layers have emerged. The particle configuration
at the latter time is shown in Figure 2.2; on which the coarse-grained velocity field
" has been superposed. A corresponding mass density contour plot is shown in Figure
2.14. The organization of the mass into two shear layers is clearly noticeable. A
shaded contour plot for the temperature field for System I following 400 collisions
per particle is shown in Figure 2.12. A comparison of Figures 2.11, 2.14, and 2.12
reveals that regions of higher density have a lower granular temperature than regions
of lower density.

Scatter plots corresponding to System II , beyond the transition at a time corre-
sponding to 100 collisions per particle are presented in Figure 2.13. The coarse-grained
velocity field superposed on the particle configuration for that system recorded at the
same time is shown in Figure 2.3. A plot showing the contours of constant coarse-
grained density for System II at 100 collisions per particle, which provides a notion of
the cluster size, is provided in Fig. 2.14. The granular temperature field following the
same number of collisions is shown in Fig. 2.4 as a shaded contour plot. Comparison
of Fig. 2.4 and Fig. 2.14 shows that the highly prominent clusters have a much lower
granular temperature than their surroundings.

The distribution of impact parameters (cf. Fig. 1.3) in System I following 400
collisions per particle is shown in Figure 2.16(A). This is obtained by recording the
impact parameters for 40000 successive collisions occurring in the system (which
amounts to recording for a time corresponding, on the average, to 1 collision per

particle, i.e. to a ‘short’ time) and counting the number of values that lie in equal
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Figure 2.11: Scatter plots corresponding to System I following 400 collisions per par-

ticle. The organization of the mass into two shear layers is clearly noticeable.
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Figure 2.12: A shaded contour plot of the granular temperature field for
System I following 400 collisions per particle. The shade code is: darker shades for
low temperature regions and lighter shades for high temperature regions. Compar-
ing this figure to Fig. 2.14, it is seen regions of lower density have higher granular

temperature and vice versa.
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Figure 2.13: Scatter plots corresponding to System II following 100 collisions per

particle.
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Figure 2.14: A shaded contour plot for the mass density for System I following 400
collisions per particle. The shade code is: darker shades for low density regions and

lighter shades for high density regions.
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Figure 2.15: A shaded contour plot for the mass density for System II following 100
collisions per particle. The shade code is: darker shades for low density regions and

lighter shades for high density regions.
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Figure 2.16: The distribution of impact parameters (A) in System I , following 400
collisions per particle, (B) in System II , following 100 collisions per particle. The

horizontal axis represents the impact parameter scaled by the diameter of the disk.

intervals between 0 and o, the diameter of the particle. The distribution expected for
an elastic hard-disk gas in equilibrium is flat (up to noise) due to isotropy. The distri-
bution for System I is essentially flat, implying that local equilibrium is maintained,
to a large extent, in the system. The distribution for System II following 100 colli-
sions per particle, obtained in the same way and shown in Figure 2.16(B), is sharply
peaked at the maximally allowed value, o, implying that the majority of collisions in
the system are grazing collisions. This is clearly due to the coherent motion of the
clusters whose constituent particles have approximately the same velocities.

Figure 2.17 shows a shaded contour plot of the trace, P, of the total stress tensor
7 defined in (1.7) for System I following 400 collisions per particle; while Figure 2.18
shows the same quantity for System II following 100 collisions per particle. When
Figures 2.18 and 2.3 (both corresponding to System II ) are examined together, it is
seen that those regions with the largest values of P correspond to regions in which
clusters are moving and sweeping into particles that lie in the surrounding dilute
regions. In some cases, the cluster is seen even to be sweeping into particles moving

in directions generally opposite to the direction of motion of the cluster itself. When



2.4.1 Qualitative Description of the Mechanism 46

the kinetic and collisional contributions are compared, it is found that P in these
regions is dominated by its collisional part, Tr(7(?)). This is clearly due to the large
amount of momentum that is being exchanged in the collisions that occur during
the influx of new particles into the cluster and during the outflux as the cluster
sheds its particles behind it. The fact that the density of particles in the cluster is
high implies an increased frequency of collisions, which also enhances the collisional
contribution. Given that P is essentially the pressure, one may, from its definition
(1.4), speak of a ‘kinetic’ and a ‘collisional’ pressure; and one finds that, owing to
the dynamics of cluster motion, the clusters can be low temperature—and thus low
‘kinetic’ pressure—objects, and yet at the same time be high ‘collisional’ pressure

objects.

2.4 The Clustering Mechanism

2.4.1 Qualitative Description of the Mechanism

The only difference between a regular gas and a ‘granular’ one, on the microscopic
level, is the fact that in the latter case the collision process is inelastic. It is thus
clear that the fact that the homogeneous state of a granular gas is unstable should be
attributed to the inelastic nature of the collisions. In the present section, we propose
a mechanism which, we believe, underlies the instability of the homogeneous granular
state.

Consider a homogeneous granular gas composed of identical particles which is not
subject to any external forces. Assume that the macroscopic velocity field vanishes
and that the microscopic velocity is isotropic. Naive intuition may suggest that such
a system will stay in a homogeneous state of vanishing macroscopic velocity. The
energy, or granular temperature, of the system will decay due to the inelasticity
of the collisions and the only qualitative change expected with time is a possible
nontrivial evolution of the velocity probability distribution function (shrinking to a
6-function as time goes to infinity). If this picture were correct, the dynamics of
a granular gas would be highly uninteresting. However, as in any gas, one expects

statistical fluctuations of practically every physical quantity. In particular, since
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Figure 2.17: A shaded contour plot of P = Tr(7), where 7 is the stress tensor, for
System I following 400 collisions per particle. The shade code is: darker shades for
regions of low P and lighter shades for those of high P.
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Figure 2.18: A shaded contour plot of P = Tr(7), where 7 is the stress tensor, for
System II following 100 collisions per particle. The shade code is: darker shades for
regions of low P and lighter shades for those of high P.
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mass and momentum are conserved, the (mass) density and momentum density fields
are hydrodynamic variables. As a result, one expects long wavelength fluctuations of
these quantities to be ‘slow’; in particular, they can be slow with respect to the rate of
energy decay since the latter proceeds at a pace which depends primarily on the local
density and the local energy density (which determines the rate of collisions) whereas
the former can be as slow as wished, provided the wavelength is long enough. Thus,
once a hydrodynamic fluctuation of a sufficiently large characteristic length is created,
it will eventually dominate the dynamics of the system, and the relatively fast variable,
the temperature, will have to be enslaved to its dynamics. In particular, when one
considers a shear mode, regions in which the shear rate is relatively high will have a
higher temperature than other regions due to viscous heating. As a consequence, the
pressure in such regions will be relatively high as well. This elevated pressure will
drive particles out of high shear regions into lower shear regions, thus increasing the
density in the low shear regions. The frequency of collisions in the lower shear, higher
density regions will be larger than in the low density regions (the rate of collision is
proportional to the square of the density) and since the collisions are inelastic, the
particles in the dense regions will lose their kinetic energy at a faster rate than those
in the low density regions, i.e. the granular temperature will decay faster in high
density regions. This will lead to a further decrease in pressure in the high density
regions (whose pressure was relatively low even before the mass migration) hence to
an increased pressure gradient driving more particles into the high density region.
Clearly this process is self-perpetuating, ending in a cluster at the location of the low
shear region. The final size of the cluster is determined by the flux of particles out
of the cluster due to collisions with (‘hot’) particles in the dilute regions. The cluster
creation process can occur only if the rate of cooling in high density regions is fast
enough to prevent the establishment of a high pressure and if diffusion effects, which
tend to oppose such an agglomeration are slower than the clustering process. It turns
out that these conditions imply a certain length scale of intercluster distances. This
length scale is basically the linear dimension of a region most of whose mass collapses
into a single cluster, i.e. the region that contained a single temperature minimum

which the shear mode establishes before the mass migration started.
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In describing the above proposed mechanism, we have concentrated chiefly on a
shear fluctuation in an unforced system. Clearly, the self-perpertuating mechanism
leading to the creation of a cluster can start with a density or temperature fluctuation
as well. A higher density in a given region will lead to a relatively rapid cooling of
that region and to an eventual collapse. A similar argument clearly applies to the
case of a temperature fluctuation. In the case of a permanently forced system, the
granular temperature does not decay to an asymptotic zero value, but local tempera-
ture fluctuations are depressed by the inelastic nature of the collisions on a relatively
rapid time scale, which depends on local properties, whereas hydrodynamic fluctua-
tions may be long lived and thus the same mechanism described above is also relevant

to forced systems, as we shall see in Chapters 3 and 4.

2.4.2 Linear Stability Analysis of the Jenkins-Richman Equa-

tions

The ideas proposed in the previous subsection can be easily demonstrated using a ki-
netic theoretic model. This is done in the present subsection for the three-dimensional
case. An example of model equations which are based on kinetic theory, and which
have enjoyed a considerable degree of success is the set of equations derived by Jenkins

and Richman[47]. These equations read:

DT ., dp,
gpﬁ = 0p,V - (T3cVT) — apTdivv + bop, T3 Tr D, — _:LT% (2.1)
p]]))—: = —V(apT)+ bap,T%(%Av -+ éVdiVV)
1 ) 1
+ §V(bcrp,T5) -Vv + §3j(bap,T%)ij
- %diva(bap,T%) (2.2)
p = —div(pv) (2.3)

where T is the granular temperature field, p is the density, v the velocity field, p,

the mass density of a solid particle, o the diameter of a solid particle (it is assumed

in the derivation of these equations that grains are spherical and identical), % is the

material derivative and a, b, ¢ and d are functions of the solid volume fraction, v.
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The low density values of a, b, ¢ and d are given by:

a =1 (2.4)
5/
b = —— 2.5
48 (2.5)
95,/7
= 2.
¢ 128 (26)
d = %eyz (2.7)
where € = 1 — €%, € being the coefficient of normal restitution. (The definition

presented in [47] is € = 1 — & ; since energy dissipation is proportional to (1 — & ?), we
prefer the present definition). The tensor bij is the deviatoric part of the symmetrized

velocity gradient tensor and Trf)?j is the viscous heating function:

. 1 1 1, ..
Terj = 5(8,-11]-)2 + 5(33-11,-)2 — g(dlvv)2 (2.8)
where 0; = a%- and the Einstein summation convention is assumed.

We consider only the dilute limit, v — 0, of the Jenkins-Richman equations.
The similarity of these equations to the Navier-Stokes equations of hydrodynamics
is evident. The major difference is the term —%T"’/Z in the temperature equation,
which accounts for the energy losses due to inelastic collisions. This term can be
easily understood in terms of a simple kinetic model.

The homogeneous solution of equations (2.1-2.3) is v .= 0 and p = po (i.e. the

initial uniform density). The temperature satisfies, in this case, the equation:

3 dp, 3/2
—poly = ——T, 2.9
2400 0 g 0 (2.9)
where Ty denotes the homogeneous temperature. The solution of equation (2.9) is:
To(0)
T(t) = 2.10
)= ey (2.10)
where:
3p00‘
to = 2.11
T dp, TI(0) (210

l.e. it decays as 1/t? for t > to. Using equation (2.7) and the fact that p = p,v, one

obtains from equation (2.11):

Vo 1

to= Yo
° 8 vert(0)

(2.12)
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Next define an effective mean free path:

_ymo (2.13)

Following equations (2.12) and (2.13):

lo

to= —0
e (0)

(2.14)

Note that if one defines the mean free path | = 1/orn, where or = mo? (in three

dimensions) and n is the number density, then

lo = %ﬁl (2.15)

The linearization of the Jenkins-Richman equations around T, pg yields (following

a subsitution of the dilute limit values of a, b, ¢ and d (cf. equations (2.4)-(2.7)))

) 5 1 1 ..
pov = —poV8T — ToVép + T\g%ap,Tg/z(EAv — 6Vd1vv) (2.16)
3 25
§P05T = 1;g%ap,Tg/2A5T — poTodivgv
36 GVzp_., 1/2 48 ev 3/2 3 :
_ D 2 _ 8T, 2.1
Jr o Lo 0T = =T = 80T (2.17)
§p = —podivv (2.18)

where 6p and 6T are the density and temperature perturbations respectively.

It is convenient to perform the following transformations. Define:

s = %ln(l—i—ti) (2.19)
_ To(®)
q = p0T0(0)5p (2.20)
_ yTo(?)
u = To(0) v (2.21)
8T
b= ao (2.22)

Notice that s, g, u and & are dimensionless. Let ¥ = r/ly be dimensionless coordinate

vectors. Upon substitution of the variables defined in equations (2.19)-(2.22) and
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rescaling the lengths by ly, one obtains from equations (2.16)-(2.18):

1 1
u, = —eu—Vh—Vg+ g(iAu + EVdivu) (2.23)
2
hy = g—ZAh — gdivu — 3eh — 2¢q (2.24)
gs = —2€q— divu (2.25)

In equations (2.23)-(2.25), V means 3%, i.e. lo:%. Notice that unlike equations (2.16)-
(2.18), which have time-dependent (through T5(t)) coefficients, equations (2.23)-(2.25)
have constant coefficients. Let 2 = V x v. Following equation (2.23)

o0 5
- — —AQ 2.2
5 e + 19 (2.26)

and defining ¢ = divv, it follows from equation (2.23) that:
5
£ = —e€ — Ah— Aq + §A§ (2.27)

Assuming an eigenmode of the form exp(:K-r'), and an eigenvalue A, one thus obtains

from equations (2.24)-(2.25) and (2.27):

¢ —€— ng K? K? ¢
A q | = -1 —2€ 0 q (2'28)
h _t g _Bgi_ge || &

The corresponding characteristic polynomial is:

Ot et ng)(A +20) (A + 3¢ + %K?) + ng(A + %e + gxz) —0  (2.29)

It is straightforward to find from equation (2.29) that the spectrum corresponding to
equation (2.29) is given by:

2
M o= e %5{— + O(K?) (2.30)
€
2
do = —2- %f{— + O(K?) (2.31)
€

2

4K
€
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for K? <« €* and:

5
Moo= —ge — oK+ O(K") (2.33)
5 35, 23 \
_ Sp 35,2 23 34
A2,3 j:z\/;K 72K 106+ O(K*) (2.34)

for K? > €*. When K? =~ O(€?) there is a transitional behavior, which we shall
not elaborate upon. Notice that for K2 >> €2 one observes, as in the case of Navier-
Stokes, two sound modes () 3) and a heat mode. On the linear level, the shear
mode equation is decoupled from the other equations. Following equation (2.26), the

eigenvalue corresponding to the shear mode is:

5
Mo =—e— K’ (2.35)

for all values of K.

Following equation (2.10) and definition (2.19) the temperature in the homoge-
neous case decays as follows: T'(s) = T'(s = 0)exp(—2es), i.e. it decays faster than
the shear mode for K? < 32¢, faster than the heat mode (i.e. 2¢ > A;) for K2 < O(e).
Thus, in conformity with the physical picture presented in Section 2.4.1, the fluctu-
ations become dominant in time; in particular, the shear mode and the heat mode
decay slower than the temperature does for large enough wavelengths. Since modes
whose wavenumbers are far less than €? will be shown below to be irrelevant to the
clustering process, we shall consider only the case K2 > €?. At this point notice that
we implicitly assume that € < 1. Indeed the Jenkins-Richman equations seem to be
valid in the limit of almost elastic collisions; when € ~ (1) these equations may have
to be modified.

Transforming back from the s-variable to the time variable (using equation (2.19))
and noting that the wavenumber K in the rescaled space translates to kly in the
physical space, one obtains (using equations (2.20)-(2.22)) the following results for
the various fields (the leading eigenvalue, A;, is used for all modes except for the

decoupled shear mode):

L k212
8p(t) (1+ &)= k22 < € (2.36)
= 7N = 0 2,2 .
5,0(0) (1 + é)%_g":o k22 > €2
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)52 K2 < ¢
diVV(t) ~ leV(O) . ( + to) 2,2 <e (237)
2 skl
(1+ L) 5 e k22 > €2
1 k212
1+ £ ~1-3 3% k212 < €2
6T (t) ~ 6T(0)- (1+5%) L g2 (2.38)
(I+g)Es k22> €
curlv. = curlv(0)-(1+ ti G (2.39)
0

The approximate equality in equations (2.36)-(2.38) represents the fact that the den-
sity (or divv or 6T') is a mixture of eigenmodes, which we assume to be dominated
by the fastest growing eigenmode. In equations (2.36)-(2.39) it is assumed that all
wavenumbers are hydrodynamic, i.e. kly < 1; else the decay rate is much faster
than in the hydrodynamic domain. It is worthwhile noticing (cf. equation (2.36))
that density perturbations are unstable, i.e. they actually grow. Thus, linear stabil-
ity analysis reveals that the homogeneous state is unstable to density fluctuations.
Moreover, the other (decaying) modes have a slower rate of decay than the homo-
geneous temperature does for kly < O(+/€), hence they too can be considered to be
unstable, since they may dominate in the long time limit. It is easy to check that as
e — 0, all modes whose wavenumbers are nonzero decay in the way predicted by the

Navier-Stokes equation.

2.4.3 Nonlinear Analysis

The present section does not present a full nonlinear stability analysis of the Jenkins-
Richman equations. Instead, we shall use these equations to argue that they imply
clustering and that the typical scale characterizing intercluster distances is O(ﬁ), l
being the mean free path. Curiously, the dominating mode in the nonlinear analysis is
not the fastest growing linear mode, i.e. the density fluctuation. This is so because the
nonlinear instability sets in much before the linear modes have a chance to significantly
change in amplitude. Consider the (nonlinear) temperature equation (2.1). Assume
the existence of an initial incompressible (divv = 0) fluctuation (this assumption
is made for the sake of technical simplicity, the analysis below is easily generalized

to include compressible fluctuations) characterized by a long enough spatial scale,
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k~', such as to render the heat diffusion term as well as the heat convection term
negligible (an approximation to be tested a posteriori). In this case, equation (2.1)

can be approximated by:

3 . 1 A
§pT = bop,T'2 Terj —

dps

g

T3 (2.40)

Assuming further that the density can be considered to be fixed in equation (2.40),
one obtains (using equations (2.4)-(2.7) and (2.13)):

. \ 2¢ s
T = glgTrD?jT% - l—eTf (2.41)
0

Define Q) = T3. It then follows from equation (2.41) that

. 5 o €
= 21, TeD2 — 02 .
Q 1810T1” i lOQ (2.42)

Next, let Q = l—g% Then H satisfies the equation:

5 .
H= E(—:TerjH (2.43)

Assuming at this point that Trbfj 1s constant, one easily obtains the solution of

equation (2.43), and hence of equation (2.41) to be:

) _ 2

58TrD (1 — Aexp(—ty/3eTrD)

T(t) = ™ —— (2.44)
1+ Aexp(—ty/geTrDE)

where A depends on the initial value 7'(0) in an obvious way. Under the assumption

specified in the above, the temperature changes from its initial value to the value

dictated by the viscous heating function TrD? on a time scale, t1, given by
y g 1) ’ g

10, 2y\ 73
t = (—g‘eTerj) (2.45)

Thus the idea that the temperature is enslaved to the slow, hydrodynamic, modes is
established once the validity of the assumptions leading to equation (2.44) is verified.
To this end, and noting that TrlA)fj 1s composed of squares of the derivatives of the
velocity, define: Terj = k?u?, where k7! is a typical scale of the fluctuation. The

variable u is a typical amplitude of the velocity. Since divv = 0 by assumption, the
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velocity field is a shear fluctuation. Following the linear stability analysis, it decays

12,2
as (1 —{—;%)“15_2_:& (cf. equation (2.39). It is easy to check that the condition that the

amplitude of the shear mode hardly changes on the time scale of ¢, is: kly < ’T‘(O)\/E
where ¢ = 0 is taken to be the initial time for the nonlinear stage. This condition

is easily met since the temperature field decays faster than the velocity field on the
linear level and € < 1 by assumption. The condition that the amplitude of the shear
mode hardly changes even as the final stages of saturation of the temperature are
approached, i.e. in the linear equation for the shear, p%curlv = gop,T%Acurlv, one
may replace T by its saturation value, is that the typical decay time for the decay of

the shear mode exceeds (X2k%u%¢)~2. This condition implies:

48
5v/2

K12 < € (2.46)

or, using equation (2.15):

256
€
1527

Since the r.h.s. of equation (2.47) is larger than ¢, the condition k?I? < € is sufficient.

k1 <

(2.47)

The neglect of the heat conduction term in deriving equation (2.40), with respect
to, say, 22T/ is justified provided: k?I2 < €32, Assuming that the velocity in the
convective term v- VT is O(u), one finds that the neglect of the convective term (with
respect to the d—(’,’iT:’/2 term) is justified provided kly < @e, a condition that was
explained in the above. Finally, it follows from equation (2.36) that the density can
be considered fixed for a time ¢; if either kly > wgl—/z\/g, or, kly > \/%\/E This first
of these two conditions is easily met, as explained in the above. Actually, the second
condition is met as well for the mode responsible for clustering because we show below
that this mode satisfies kl ~ \/e. The result so far is that the temperature rapidly
saturates to a value dictated by the velocity field and thus a temperature gradient in
the system is formed. Since the pressure, py, in the dilute limit is given by p, = pT,

one finds: \
5 plgh

Pr= 18
Substituting the value of Iy from equation (2.14) and using p = p,v, one obtains:

(2.48)

_ 5ta?p, Trﬁfj
18-64 ep

Ph (2.49)
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1.e. the pressure established is inversely proportional to the density. This result is
clearly in conformity with our qualitative analysis which argues that the larger the
density, the lower the pressure.

The pressure gradient induced by the mechanism considered above induces a mi-
gration of particles into the low temperature regions. We shall not present here a full
analysis of this motion. Instead we shall find the appropriate time scale as follows.
Consider the part of the equation for the momentum density, P, which contains the

pressure induced forces alone

P = —Vp, (2.50)
in conjunction with the equation of continuity: p = —divP. It follows that:

Clearly the time scale characterizing equation (2.51), when the typical length scale is
k™t is: ty = ¢, /. Substituting equation (2.48) into the formula for ¢; one obtains:

_ [ e
we L o

Thus ¢5 is shorter the larger & (it takes less time for the mass to move a distance 2%, the

shorter the distance). Thus the fastest and dominant cluster formation mechanism
occurs at the largest allowed value of k. Since following (2.47): ki < /e, it follows
that the process of clustering occurs on a scale determined by kl ~ \/e.

When kl > /e the clustering mechanism is not possible. On the other hand the
linear modes still decay slower than the homogeneous temperature field. Consequently
when k! > /e one expects the system to be in a non-uniform state. The slowest
decaying hydrodynamic modes, i.e. those with the lowest possible values of k allowed
by the geometry of the system, will then dominate in the long run. These results are

borne out by the simulations presented in this work.

2.5 Summary

The inelastic nature of the collisions occurring in a granular gas renders its dynam-

ical properties radically different from those of a regular one. In particular, the
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homogeneous state of a granular gas is unstable to inhomogeneous fluctuations. The
instability is demonstrated in the present paper in two simulated unforced systems
of rigid disks, one of whose collisions are nearly elastic and the other highly inelastic.
It is found that as the gas evolves from a homogeneous and isotropic initial state, it
undergoes a transition to a state which is highly inhomogeneous. The two regimes
are characterized by well-defined global statistical properties such as the flatness of
the fluctuating velocity distribution and the decay rate of the average granular tem-
perature. The post-transition regime is characterized, in the nearly elastic case, by a
persistent organization of the mass and velocity field into two shearing layers; and in
the highly inelastic case, by the formation of dense and highly pronounced wandering
clusters of particles. A linear stability analysis of the Richman-Jenkins equations of
motion in the dilute limit shows that the homogeneous state, corresponding to the
initial condition prescribed in the simulations, is indeed unstable to density fluctua-
tions. Moreover, it is also shown that although the other fluctuations decay, they do
so at a slower rate than the homogeneous temperature does when the wavenumber
satisfies the condition kly < O(1/€). Hence these fluctuations can also be considered
to be unstable, since they may dominate the dynamics of the temperature in the long
time limit.

A spectral analysis of the mass and momentum densities of the decaying granular
gas at successive times reveals that one or more momentum modes grow to dominate
all others in the momentum spectrum before the growth of the corresponding modes
in the mass spectrum. Thus the picture of a momentum fluctuation (which is of a
wavelength sufficiently long to outlive the decay of the initial temperature) arising
to dominate the dynamics of the system, and thereby dictating the dynamics of the
temperature (after the effect of its initial value has decayed away), is used in the
nonlinear analysis presented in Section 2.4.3. There we have shown that a shear
fluctuation give rise to a temperature inhomogeneity which in turn gives rise to a
pressure gradient. The latter then causes motion of mass which leads to cluster
formation. For the clustering process to be possible, the diffusive processes which
tend to oppose the inhomogeneity due to the clustering must be slower than the

mass motion. This implies a lower bound on the length scale of variation of the
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inhomogeneity. However, it takes lesser time for the mass to move when this length
scale is shorter. Hence the fastest (and therefore dominant) clustering process must
correspond to the shortest length scale consistent with the diffusive lower bound. This
length scale, given by Lo ~ ly//€, has been verified in our numerical simulations.
The fact that typical granular systems are inhomogeneous is to be taken into ac-
count in any coarse-graining procedure designed to produce effective homogeneous
equations of motion and corresponding boundary conditions. Even when the dimen-
sions of the system are too small to give rise to clustering, the density distribution
and the stress distribution will be strongly influenced by the aforementioned inhomo-
geneities. It follows that the inherent instability of homogeneous granular systems is

of direct consequence to engineering applications.



Chapter 3

Cluster Dynamics in Granular

Shear Flows

In this chapter, microstructural properties of dilute simple shear flows (‘Lees-Edwards’
systems) of rigid inelastic disks are studied using numerical simulations. One of the
possible states of the flow when it is statistically stationary consists of dense strips
aligned along the extensional axis of the shear (i.e. at 45 degrees to the streamwise
direction). These strips are interspersed among relatively dilute strips of a similar
orientation and size. Depending on the inelasticity, the dense strips may have an
inner structure consisting of dense clusters elongated along the strip in which they
lie. These clusters are spontaneously created by the dynamics of the system, whose
initial condition is a state of uniform density and granular temperature, and uniform
shear. Once created, the clusters are not stationary, since they are rapidly rotated and
stretched by the shear. Nevertheless, the spatial orientations of the clusters remain
mostly along the extensional axis. This orientation is maintained by a highly time-
dependent and strongly nonlinear mechanism by which a cluster that has rotated away
from the extensional axis scatters into an adjacent cluster, leading to the dispersion
of the particles in both clusters. The dispersed particles subsequently reorganize
into new clusters aligned along the extensional axis. By maintaining the orientation
of the clusters, the scattering mechanism stablizes the type of ‘stripwise clustering’

microstructure that is observed. We examine here the scattering process as well

61
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Figure 3.1: The average temperature, T, versus the square of the shear rate, 2.
The data are obtained from systems whose parameters other than v are given by

e = 0.8, N =200000,L; = Ly, = 1 and # = 0.05. The solid line through the data

points is drawn to guide the eye.

as the physical mechanism responsible for the emergence of clusters. We show by
means of spectral analyses of the various field variables that for a given value of
the coeflicient of restitution € the dominant spatial scale Ly in the microstructure
corresponding to the separation between clusters is given by (1.1). We also examine
other microscopic aspects of the flow such as the stress distribution and distributions

of impact parameters and free paths.

3.1 Microstructure and Cluster Dynamics

3.1.1 Global Characteristics

An elastic system subject to the Lees-Edwards boundary conditions will heat up
monotonically while remaining in a state whose temperature, density and macro-
scopic velocity gradient are spatially uniform. The inelastic system, on the other

hand, has an internal energy sink due to the inelastic collisions. Hence it will, when
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subject to the same boundary conditions, reach a state with a steady average granular
temperature that is determined by the balance between the rate of shear heating and
the rate of inelastic dissipation. In the simulation, a state of the system is considered
to be steady if there is no drift in the values of the average granular temperature and
the flatness of the fluctuating velocity distribution (cf. (1.8)); that is, these quanti-
ties attain (up to statistical fluctuations) constant ‘equilibrium’ values. The steady
global average granular temperature, T, defined following (1.7), obeys the following

empirical relation

2 2
T=4 (1—_17 + B) . (3.1)
which we have found to closely fit the numerical data. Here A ~ 0.080 and B ~ —0.54
are dimensionless constants. The ratio o /7 is proportional to the mean free path in
a homogeneous system of solid fraction 7. Figures 3.1, 3.2 and 3.3 illustrate this
relationship by comparing the values of T in systems characterized by different values
of €,y and 0?/72%. The straight line through the data points in Fig. 3.2 is the dilute
limit relationship between T and € as derived by Jenkins and Richman in Ref. [39].
Following equations (70) and (71) in Ref. [39], this relationship is:

— 0y 7202( 1 _l)
T=tveyr—sy » \i—¢ 1) (3:2)

It is easy to check that (3.1) and (3.2) yield close results as & approaches unity. It
should be noted that the theory in Ref. [39] is derived for a spatially uniform and
time-independent shear flow, whereas the actual flow has a highly non-uniform and
highly time-dependent microstructure. It is therefore somewhat surprising that (3.2)
agrees so well with numerical results. It would be interesting to discover which average
quantities are unaffected by the existence of microstructures and the reasons for their
being unaffected.

The external parameters relevant to shear flow are the coefficient of restitution, € ,
the total number of particles, N, the value of the velocity at the horizontal boundaries
+U/2, the horizontal and vertical dimensions of the enclosure, L, and L, respectively,
and the diameter, o, of the disk. Although some appropriate dimensionless quantities
can be constructed from the above parameters, we find it instructive to leave some

quantities in dimensional form which we will use to characterize the flow. One useful
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Figure 3.2: The average temperature, T, versus &€ . The data are obtained from
systems whose parameters other than € are given by N = 200000,U = 100, L, =
L, =1 and v = 0.05. The solid line through the data points is the prediction of the

generalized Gaussian theory of Jenkins and Richman (cf. Section 5.3).
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1 and € = 0.8 (note that the value of N here is smaller than the value for Fig. 3.1
and Fig. 3.2). The solid line through the data points is drawn to guide the eye.
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dimensionless combination is the system’s average solid fraction, ¥ = #No?/4L,L,;
and one useful dimensional combination is the average shear rate, v = U/L,. Notice
that the values of N, 7, L, and L, determine o. Also, the value of v merely sets the
numerical value of the average granular temperature in the system (if the values of
the other parameters are held fixed); and since the value of the temperature merely
determines a time scale but has no further dynamical importance (it does not affect,
for example, the order of collisions in the system), different systems with all the same
parameters except for 4 will be identical up to a trivial scaling in the time variable. We
have indeed numerically verified that changing the value of v while keeping the other
parameters fixed has no effect on the shape, size or orientation of microstructures in
the flow.

We also note that, as we shall see in Chapter 4, the value of the initial temperature
plays a significant dynamical role in determining the final steady state of the system.
We found that, in order for the system to converge to a state that exhibits the
‘stripwise clustering’ microstructure, the values to be used for the initial temperature
should be ‘close’ to the temperature of the steady state (the precise meaning of ‘close’
will be made clear in Chapter 4). When these values are used, the steady state is
independent of the precise value of the initial temperature. The average temperature
of the steady state is then determined by « and the other external parameters alone.
In the rest of this chapter, we shall consider only steady shear flows of this kind and

shall use v, 7, as well as € , to characterize them.

3.1.2 Microstructural Features

Here we describe the microstructural features of two specific sheared systems which
we will refer to as System III and System IV. The parameters of System III are
given by: € = 0.9, N =20000,U =100, L, = L, = 1 and # = 0.05; while the param-
eters of System IV are given by: € = 0.6, N = 200000,U = 100,L, = L, = 1 and
v = 0.05. These parameters determine the particle diameter o and mean free path [,
which are given, for System IIT, by ¢ = 0.00178 and [ ~ 1/71, and for System IV ,
by o = 0.000564 and [ ~ 1/226 (the mean free path in a two-dimensional system
is defined as | = L,L,/2No). Both systems are dilute but System III is nearly
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elastic while System IV is highly inelastic. The reason the number of particles in
System III is made much smaller than that in System IV is that we wish to demon-
strate the bifurcation between quasihomogeneous and highly inhomogeneous states
determined by whether the intercluster distance, Lo, given by (1.1), can be accomo-
dated in the system. The parameters for System III are chosen so that the value of
Ly for the system is of the order of its linear dimension, L,, whereas the parame-
ters for System IV are chosen so that the value of Ly is much smaller than its linear
dimension. We will see that the properties of a quasihomogeneous system (which is
also a ‘small’ system since the condition of whether the system size is larger than
Lg is equivalent, in the case of a fixed system volume, to whether the number of
particles in the system is larger than a given threshold) is qualitatively different from
an inhomogeneous (or ‘large’) system. In particular, clusters are created only in the
‘large’ system but not in the ‘small’ system, and the values of the stresses in the
‘small’ system are closer to the values predicted by kinetic theories of granular flows
than those in the ‘large’ system.

We will now present some of the properties of System IIT and System IV such
as their streamwise-averaged flow properties and the various macrofields of density,
granular temperature, kinetic and collisional stresses. A plot of the particle configura-
tion for System III at a time corresponding to the lapse of 200 collisions per particle
following the initial condition is shown in Fig. 3.4. A vector plot of the velocity field
is superposed on this plot. A plot of the density field for System III at the same time
is shown in Fig. 3.5 as a shaded contour plot. The values of T and the flatness, &,
are statistically stationary at this time (see Fig. 3.6). The density contour plot shows
that weak flow-scale inhomogeneities in the form of thick strips aligned along the
extensional axis of the shear and spanning the system exist in the flow. The arrange-
ment of these strips is such that the slightly denser strips are interspersed among
slightly less dense strips of a similar size and orientation. The internal structure of
these strips, though still weakly inhomogeneous, does not contain the elongated dense
clusters that exist in highly inelastic sheared systems. The temperature, collisional
and kinetic pressure fields in System IIT at the same time as that corresponding to

the density field shown in Fig. 3.5 are shown in Fig. 3.7, Fig. 3.8 and Fig. 3.9
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Figure 3.4: The particle configuration for System III on which a vector plot of the
velocity fleld is superposed. The time here corresponds to 200 collisions per particle

following the initial condition.
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respectively. One may observe by comparing Fig. 3.7 and Fig. 3.5 that regions of
higher densities correspond to regions of lower temperatures and vice versa. A study
of Fig. 3.8 and Fig. 3.5 also shows that regions of high collisional pressure correspond
to regions of high density and vice versa. The qualitative relationship between the
kinetic pressure and the density is similar to that between the temperature and the
density. The collisional pressure is, on the average, one order of magnitude smaller
than the kinetic pressure. This is reasonable since the system is relatively dilute. The
spatial structure of the kinetic and collisional pressure fields are similar to that of the
density field, that is, they consist of diagonal and weakly inhomogeneous strips that
span the linear dimension of the flow. This quasi-homogeneous microstructure is to
be contrasted with the highly inhomogeneous structure in System IV, which we shall
examine next.

A particle configuration plot for System IV at a time corresponding to the lapse
of 100 collisions per particle following the initial condition is shown in Fig. 3.10. A
vector plot of the macroscopic velocity field is superposed on the particle configuration
plot. The corresponding density field is shown in Fig. 3.11 as a shaded contour plot.
These plots shows that dense and anisotropic local agglomerations of particles occur
throughout the flow field in the form of elongated clusters that are oriented mostly
along the extensional axis of the shear. Other orientations for these clusters are also
observed—they range between 0 and 45 degrees measured counterclockwise from the
streamwise direction. The reason for the angles of orientation to lie exclusively in this
range will be explained in Section 3.1.4. The stripwise organization of the clusters can
still be discerned in these plots, though the strips in this case are ‘pinched’ and ‘bent’
in several places along their lengths and do rarely span the system, in contrast to those
found in System III, which were more definitely formed and of a larger spatial scale.
Just as the dense strips in System III are interspersed among dilute strips of a similar
orientation and size, the clusters in System IV are also interspersed among relatively
dilute regions of a similar shape, orientation and size. The symmetry of the dense
and dilute regions can be appreciated if one imagines that the gray-scale shading is
reversed in Fig. 3.11, i.e. that the lighter shaded regions correspond to more dilute

regions instead of denser regions. Then it is evident that the dilute regions have the
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Figure 3.5: The density field for System III at a time corresponding to 200 collisions
per particle following the initial condition. The shade code is: lighter gray for higher

densities and darker for lower densities.
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Figure 3.6: Flatness and average temperature as function of time in System IIL
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Figure 3.7: The granular temperature field for System III at a time corresponding to
200 collisions per particle following the initial condition. The shade code is: lighter
gray for higher temperatures and darker for lower temperatures. A comparison with
Fig. 3.5 shows that regions of higher temperature correspond to regions of lower

density and vice versa.



3.1.2 Microstructural Features 73

Figure 3.8: The collisional pressure field for System III at a time corresponding to
200 collisions per particle following the initial condition. The shade code is: lighter
gray for higher pressures and darker for lower pressures. A comparison with Fig. 3.5

shows that resions of higher pressure correspond to regions of higher density as well.
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Figure 3.9: The kinetic pressure field for System III at a time corresponding to 200
collisions per particle following the initial condition. The shade code is: lighter gray
for higher pressures and darker for lower pressures. A comparison with Fig. 3.5 shows

that regions of higher kinetic pressure correspond to regions of lower density.
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same spatial structure as the dense regions. The stripwise organization of the clusters
in System IV will be refered to as the ‘stripwise clustering microstructure’.

The temperature, collisional and kinetic pressure fields for System IV at the same
time as that corresponding to the density field shown in Fig. 3.11 are shown in Fig.
3.12, Fig. 3.13 and Fig. 3.14 respectively. The qualitative relationships of these

macrofields to each other are the same as those for the corresponding macrofields of

System IIL

3.1.3 Qualitative Relationships between the Macrofields

The qualitative relationships between the values of the macrofields as brought forth by
comparing Figures 3.5-3.9 for System III and Figures 3.11-3.14 for System IV can
be understood on the basis of the fact that the rate of collisions in a denser region
is typically higher than that in a less dense region (if the temperatures of the two
regions are comparable), since this rate is proportional to the square of the density.
The higher rates of collisions in denser regions are responsible for the higher rates of
loss of kinetic energy in these regions relative to the rates in the more dilute regions.
As a result, the temperature in dense regions decreases, causing the pressure in these
regions to decrease as well. The difference in the pressures in the dilute and dense
domains will cause a mass migration from the former into the latter, the overall effect
being a further increase in the density in regions that were denser to start with. The
temperature may yet be reduced further since the influx of mass increases the rate
of collision and therefore also the rate of energy dissipation. However, the kinetic
energy in the flow is being continually replenished by a pumping mechanism, which
in this case is the heating due to the shear. This heating causes the temperature
to rise and thus restores a high density region to a lower density. Clearly, for the
temperature of a dense domain to be lower than that of a dilute region and for it
to persist at the lower value, or conversely for the temperature of a dilute region to
persist at its higher value (with similar statements to be made for the persistence
of the other macrofields at their different magnitudes), a nonlinear process involving
relatively long-time dynamics of the flow must be involved. This process involves

the interplay of long-lived long-wavelength density fluctuations and local inelastic
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Figure 3.10: The particle configuration for System IV on which a vector plot of the

velocity field is superposed. The time here corresponds to 100 collisions per particle

following the initial condition.
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Figure 3.11: The density field for System IV at a time corresponding to 100 collisions
per particle following the initial condition. The shade code is: lighter gray for higher

densities and darker for lower densities.
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Figure 3.12: The granular temperature field for System IV at a time corresponding
to 100 collisions per particle following the initial condition. The shade code is: lighter
gray for higher temperatures and darker for lower temperatures. A comparison with
Fig. 3.11 shows that regions of higher temperature correspond to regions of lower

density and vice versa.
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Figure 3.13: The collisional pressure field for System IV at a time corresponding to
100 collisions per particle following the initial condition. The shade code is: lighter
gray for higher pressures and darker for lower pressures. A comparison with Fig. 3.11

shows that regions of higher pressure correspond to regions of higher density as well.
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Figure 3.14: The kinetic pressure field for System IV at a time corresponding to 100
collisions per particle following the initial condition. The shade code is: lighter gray
for higher pressures and darker for lower pressures. A comparison with Fig. 3.11

shows that regions of higher kinetic pressure correspond to regions of lower density.
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dissipation, which is described next.

Since the granular system has a large number of degrees of freedom, one expects
statistical fluctuations of almost every macroscopic physical quantity to occur in it.
Now consider the mass density field, which is a hydrodynamical variable whose long-
wavelength fluctuations evolve slowly in time (since their time scales are diffusive, i.e.
proportional to the squares of the corresponding wavelengths). We see that the rate
decay of a fluctuation in the density field can be slow with respect to, for example,
the rate of energy dissipation. This is because the latter depends on the local density
and temperature, while the former can be as slow as its wavelength is long. Hence
once a hydrodynamic density fluctuation of a sufficiently long characteristic length is
created, it will eventually dominate the dynamics of the system, slaving the relatively
fast variable, the temperature, to it. Thus, when one considers a density fluctuation,
the regions in which the density is higher will ‘cool’ faster and thus have a lower
temperature and pressure than the regions in which the density is lower. The higher
density regions will therefore tend to draw more mass into themselves. Note that the
lowering of the temperature and the subsequent mass migration are possible because
these processes are fast relative to the diffusive decay of the density fluctuation. The
drawing of mass into the higher density regions decreases the temperature of these
regions even further, thus causing even more mass to be drawn into them. The
granular system therefore has positive feedback, that is, a small departure from a
state of uniform density will generate an internal field (which is due to the pressure
difference) that amplifies the departure, leading finally to the creation of high density
‘mass attractors’ in the flow.

The influx of mass into a ‘mass attractor’ does not continue unabated, since the
system is continually being heated by the shear. The mass influx will correspond to
an energy influx, which tends to increase the temperature, and also the pressure, and
thereby oppose further influx of mass. In addition, the presence of a density gradient
will cause mass to diffuse out of the higher density regions. Hence, the creation
of nontransient regions of higher density—i.e. the clustering of particles—is possible
only if the rate of lowering of the temperature in these regions is fast enough to prevent

the build-up of a high pressure and if the diffusion of particles out of these regions is
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slower their influx. When these conditions are met, we obtain a flow in which clusters
are created and are separated by a characteristic length scale determined by these

conditions. This length scale is discussed further in Section 3.2.1.

3.1.4 Cluster-Cluster Interaction

The stripwise clustering microstructure described in Section 3.1.2 has been studied
before both theoretically[48, 49] and in computer simulations[40]. The origin of this
type of microstructure may be described as follows. A short-time instability, i.e.
a mode that grows transiently but decays on asymptotically long time scales, first
gives rise to a periodic density fluctuation whose typical wavevector is aligned ap-
proximately along the compressional axis of the shear (i.e. at 135 degrees from the
streamwise direction). Such a wavevector corresponds to structures which lie at 45
degrees to the streamwise direction. Using linear stability analysis[48, 49, 50], one
can show that these transiently growing modes arise in the (initially uniform) density
field of a uniform shear flow governed by the equations for granular flow derived by
Jenkins and Richman[5, 51] and also by the equations derived by Lun et a[52]. These
stability analyses show that the wavevectors that correspond to the most unstable
modes lie approximately along the extensional axis of the shear. The stability analysis
presented in Ref. [50] of the two-dimensional equations derived in Ref.[51] shows that
the wavevectors corresponding to the most unstable mode lie ezactly along this axis.
Note also it is straightforward to show (see for example the appendix of Ref. [53])
that after long times, all infinitesimal fluctuations eventually decay and thus granular
shear flow is linearly stable. The density fluctuation, while in its transient growth
stage, initiates within the diagonal strips the clustering process described in Section
3.1.3 which leads to the creation of dense clusters within the strips. Now, these clus-
ters are by no means static structures, since they are being continually convected
by the flow. Morever, they scatter into each other as they are being convected, thus
producing a very complex dynamics that involves rapid dispersion and reorganization
of mass in the flow. Nevertheless, the stripwise clustering microstructure persists. We
believe that it is by means of the cluster-cluster interactions, hand-in-hand with the

nonlinear clustering process, that this type of microstructure is maintained in the
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flow. We will now examine cluster interactions in the shear flow.

Since clusters are convected as coherent structures until they are modified by
interactions with each other, we will first make a few remarks on the effect of the
velocity field on structures in the flow. It turns out that the velocity fields in both
System III and System IV correspond to an extremely uniform linear shear field.
This is the case despite the rapid temporal variations in the spatial structures of both
systems. It can be seen in Fig. 3.15 and Fig. 3.16 that the profiles of the streamwise-
averaged velocity fields respectively of System III and System IV are linear across
their domains. In fact, the streamwise-averaged velocity fields for both systems re-
main linear at all times. By computing the corresponding vorticity fields, we have
verified that the velocity fields in both systems correspond everywhere to a very
uniform shear field. Some other streamwise-averaged properties for System III and
System IV, such as their temperature and number density profiles, are shown in Fig.
3.15 and Fig. 3.16 respectively as well. These profiles show variations with typifiable
length scales on an essentially flat background.

It is easy to see that a two-dimensional uniform shear field, V(z,y), with shear

rate y can be written as

V(z,y) = 21(y,2) + (v, ~=)]. (3.3)

Equation (3.3) is written so that the velocity field is decomposed into two parts,
one of which is irrotational and the other solenoidal (i.e. divergence-free); it also
results from writing the strain rate tensor (i.e. the velocity gradient tensor) as a
sum of symmetric and anti-symmetric parts. The velocity field corresponding to the
first term in the square brackets in (3.3) is an irrotational stretching field (cf. Fig.
3.17(A)) which tends to compress a flow structure along the 135-degrees direction and
stretches it along the 45-degrees directions (all angles here are measured relative to the
streamwise direction); these directions are parallel to respectively the compressional
and extensional axes of the shear. The velocity field corresponding to the second
term in the square brackets in (3.3) (cf. Fig. 3.17(B)) is just a clockwise solid body
rotation of the system. Thus all structures in the shear flow are permanently and

simultaneously compressed, stretched and rotated by the flow.
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Figure 3.15: Streamwise-averaged flow properties for System III: (A) V; (B) V,;
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the relative fluctuations being very small.
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Figure 3.16: Streamwise-averaged flow properties for System IV : (A) V,; (B) Vi;

(C) density, p; (D) temperature, . Notice that all profiles are essentially uniform,

the relative fluctuations being very small.
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Figure 3.17: The decomposition of the velocity field into a sum of a irrotational

stretching/compressing field and a pure rotation.

It seems then that there should, at any instant of time, be clusters aligned at
angles of inclination that are not equal to 45 degrees. However, since the cluster
starts off at 45 degrees and is rotated clockwise, and since the longer the cluster is
rotated, the more likely it is to collide with adjacent clusters and be dispersed by
the collision, a distribution of angles of inclination for the clusters emerges. This
distribution is weighted towards angles close to 45 degress and tails off as the angle
becomes smaller. In fact, as we shall see in Section 3.2.1, the fourier spectra of the
density field show that its power is concentrated in peaks that correspond to spatial
structures that are aligned at angles approximately between 0 and 45 degrees. The
peaks corresponding to structures aligned at close to 45 degrees are stronger than
those corresponding to structures aligned at much less than 45 degrees. These peaks
are weaker for smaller angles of alignment. Very little power appears in the spectrum
outside the range that correspond to angles between 0 and 45 degrees and thus very
few spatial structures are aligned at angles beyond this range.

The kinematics of cluster interaction can be described with the help of a sequence
of closely cropped contour plots that show the density field around two neighboring

clusters at successive instants of time. Fig. 3.18 shows a sequence of contour plots of
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Figure 3.18: A close view of the density field at successive instants of time around two

clusters interacting with each other. The shade code for the contour plots is: lighter

grevs for higher density and darker for lower densities. The detailed explanation of

the plots are provided in the text.
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the density field in a small window that is just large enough to show a few clusters
lying within two adjacent dense strips. These plots are produced from snapshots of
System IV at successive instants of time which were separated by an interval that
corresponds to the lapse, on the average, of 0.25 collisions per particle in the system
(this means that a total of N/4 collisions, where N is the number of particles in
the system, have occurred between one plot and the next). Fig. 3.18(A) shows two
clusters that were oriented approximately along the extensional axis of the shear with
the cluster labeled A in the figure lying above and to the left of the cluster labeled
B. In Fig. 3.18(B), which shows the density field 0.25 collisions per particle later, we
see that both clusters A and B have rotated slightly away from the extensional axis
and they are now closer to each other. Both clusters have also been stretched slightly
along the extensional axis by the flow. We believe the fact that the clusters appear to
have now been ‘drawn’ closer to each other is not a dynamical effect. That is, it is not
due to the presence of an attractive internal field between the clusters; but rather it
is a purely kinematic effect that is due entirely to convection. This conclusion follows
from the fact that the motion of each cluster as a whole is found to closely match the
motion dictated by the velocity field.

It is clear that since the velocity field (3.3) is linear, a local frame of reference
moving at the local value of the velocity given by (3.3) will have a (relative) velocity
field in it that has the same structure as (3.3). That is, the velocity field, v, in the
local frame is given by Vv = (v/2)[(7,%) + (§, —%)], where &, 7 are coordinates in the
local frame. This means that clusters in the local frame will appear to rotate about the
origin of the frame, and two clusters that are close enough together whose geometric
centers lie approximately along the same horizontal line will certainly collide into each
other as they are being rotated. This is roughly the situation with the two clusters
shown in Fig. 3.18. The collision that occurs between them is depicted in Fig. 3.18(C)
and Fig. 3.18(D): in the former figure, the bottom half of cluster B is seen to have
begun to scatter into cluster A, creating an expanded region of dispersed particles
(though still of moderately high density). Then, in the latter figure, a ‘mass attractor’,
labeled M, forms out of this region while the top half of cluster B breaks away from

what is now the amalgamation of its lower half with cluster .A. This amalgamation
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is then compressed in the 135 degrees direction and stretched in 45 degrees direction
by the shear, causing a new cluster elongated along the latter direction to take shape.
This cluster becomes more fully formed in Fig. 3.18(E) and is labeled C. It can also be
seen in Fig. 3.18(E) that the top half of cluster C is about to scatter into the bottom
half of cluster B’ (which is the broken-off descendant of cluster B in Fig. 3.18(C)).
The outcome of this scattering is again a dilated region of dispersed particles as shown
in Fig. 3.18(F), and the cycle of formation of a new cluster through the appearance
of a mass attractor in this region then repeats. The fact that the scattering produces
a dilated region is evidently due to the fact that part of the kinetic energy of the
colliding clusters is converted into ‘heat’; i.e. the kinetic energy of random motion of
the particles, which causes the temperature, and hence the pressure, of the region to
increase, thus dispersing the particles in it.

The paradigm of this process of cluster convection and cluster scattering followed
by dilation and mass reorganization applies throughout the system. Hence, even
though the spatial orientations of the clusters in the system appear to remain mostly
along the extensional axis, what actually happens is that new clusters are being con-
tinually created in this direction. The structure of the other field variables, such
as the temperature, kinetic and collisional stress tensors, follow this time-dependent
paradigm. That is, a local organized inhomogeneity is first created along the exten-
sional axis and is convected and then dispersed or modified by cluster interactions
before a new inhomogeneity is reorganized in its place. Since a region of average den-
sity in the flow is always (nonlinearly) unstable with respect to the creation of clusters,
the mass reorganization stage that follows the dilation stage is due to the same non-
linear clustering mechanism that is responsible for the creation of diagonally aligned
clusters from the initial uniform density field. Thus, in short, the stripwise cluster-
ing microstructure in simple granular shear flows is stabilized through the combined
effect of a nonlinear clustering instability, cluster convection and a complex process

of cluster interaction and mass reorganization.
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2U

Figure 3.19: The Lees-Edwards system and its periodic images

3.2 Spectral Analyses and Microscopic Dynamics

In this section, we will present the Fourier spectra of the density and momentum fields
of System III and System IV as well as some results of spectral analyses of other
sheared systems characterized by various combinations of the external parameters.
We will show that the typical length scale in the density fields of systems with different
values of the coefficient of restitution, é , follow the relationship given in (1.1). In
addition, we will examine some microscopic features of the dynamics such as the
impact parameter distribution and the distribution of free paths before collision. We
will show that the latter distribution is highly anisotropic and that it deviates, in the
regime of short free paths, from a strict exponential decay distribution that is usually

assumed for a dilute gas.

3.2.1 Fourier Spectra

The Fourier spectra of the field variables are extremely useful because they serve
to identify dominant scales in the microstructure that forms in the shear flow. The

formulas for the Fourier transforms are the same as the ones used in Section 2.2 but
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are listed here again for ease of reference. The Fourier transforms of the mass and

momentum densities are:

(k) = %mz—:exp(ik-rj) (3.4)
pk) = él;m ) v,exp(zk - r;). (3.5)

where r; is the position vector of particle j in the system. In a periodic domain,
the allowed wavevectors are k = (2pn/L,,2qn/L,), where p and q are integers and
L. and L, are the dimensions of the system. However, the Lees-Edwards boundary
conditions are periodic in the Lagrangian frame for shear flow—i.e. they are periodic
only after a local Galilean transformation that depends on the local mean velocity has
been applied to the coordinate system—and they are not periodic in a static sense.
We may obtain the wavevectors allowed by the Lees-Edwards boundary conitions as
follows: let a; and a, be the ‘basis vectors’ for the lattice consisting of the system and
its periodic images as shown in Fig. 3.19. These vectors are time-dependent since the
periodic images move with time. Let $ be an integer such that 0 < L,yt — pL, < L,
and define [yt] = vt — pL,/L,. Then we have 0 < [yt] < L,/L, and the basis vectors

can be written as
a, = (Lg,0) (3.6)
az = ([vt]Ly, Ly) (3.7)

The lattice is invariant to translations T = za; + ja, of the origin, where 7 and ; are

integers. Thus any field variable 9(r,t) at a given time ¢ will satisfy

P(r,t) = P(r + T,1) (3.8)

If ¢(r,t) is expanded in a fourier series,
B(r,t) = 3 (t) exp(ik - 1) (3.9)
k

we have 3o} 4 (t) exp(ik - r) = ¥y ¥ (t) exp(ik - r + 7k - T). The condition to be
satisfied by the allowed wavevectors is therefore k- T = 27 M, where M is an integer.

It is easy to check that k is given by

k = Ik; + ks, (3.10)



3.2.1 Fourier Spectra 92

30 T o T T [ T
. e e
o o °
: o : o : ©
: s : fo :
e O, e O, R e, _
20 o ; 0 5 o
: o ; o . °
o : ° ©
‘o s ® 5 o
N N N M N (o]
10 RIS ST P R ISR F I Q... ST TOIEE TRTNS -
o Lo % P e ?
‘o o ' o
: o ©° : °
: : o :
: o N :
o] : H H
ky O RTINS HTrm OO SRR O, _
0 ° : °
o : o : ° :
‘o : o : o
el o 0
-10 R g o o -
‘o : o 5 o
: o o g °
° o : ° :
20 b Qe e o o]
o : ° :
o : o : © :
‘o o o
: o H o : °
230 i i o H P ° I
-30 -20 -10 0 10 20 30
kX

Figure 3.20: Sampling points in k-space at given instant corresponding to Lees-

Edwards boundary conditions.

where [ and 7 are integers, and k; and k, are the basis vectors for the ‘reciprocal

lattice’ given by

ky = (27r 2““””) (3.11)

L L

2T
ko=10,—]. 3.12
.~ (0.Z) (3.12)

If L, = Ly, then the horizontal and vertical intervals between the sampling points
in k-space remains as those in the static case. However, the sampling points are no
longer arranged on a square lattice but are arranged on a ‘rhomboid’ lattice whose
tilt is time-dependent. A typical configuration of the sampling points in k-space at
some given time is shown in Fig. 3.20. Although the Fourier decomposition of a
field variable in this case consists of modes that are continuously being turned by the

shear flow and are dependent on the time at which the field variable is given, the
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Figure 3.21: Power spectrum of the density field of System IV shown in Fig. 3.11.

interpretation of the spectrum remains unchanged. The spectrum is merely sampled
at a different set of points which are shifted with respect to the ones corresponding
to static periodic boundary conditions. The power in the spectrum along the 135
degrees direction (relative to the positive k, axis) in k-space corresponds, just as in
the static case, to spatial structures aligned at 45 degrees to the positive z-axis.

Fig. 3.21 shows a contour plot of the Fourier (power) spectrum of the density field
for System IV shown in Fig. 3.11. The power spectrum, R(k) is defined as

R(k) = 3(k)A(k)’ (3.13)

where p(k) is given by (3.4) and the superscript * denotes complex conjugation. The
wavevectors k for which p(k) is computed are those given by (3.10). The plot in
Fig. 3.21 is drawn with contours of constant R(k). The contours correspond to
equally spaced values of R(k) between the minimum and maximum values in the

spectrum. Fig. 3.21 shows that the dominant wavevectors are aligned at angles
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Figure 3.22: The power spectrum of the density field of System III shown in Fig. 3.5.

between 90° and 135° with respect to the positive k, axis. This implies that spatial
structures in the density field are aligned at angles between 0° and 45° (all angles are
being measured with respect to the streamwise direction). The alignment of these
structures can clearly be seen in the particle configuration shown in Fig. 3.10 and in
the contour plot of the density field shown in Fig. 3.11. The corresponding spectrum
for System IIIis shown in Fig. 3.22. The dominant wavevectors are again aligned
between 90° and 135°, though their magnitudes are larger than those of the dominant
wavevectors in System IV, indicating that the spatial scales in the density field in
System III are smaller. Since the mean free paths in the two systems are different, we
cannot directly compare their spatial scales. However, the comparison can be made if
these scales are expressed in units of the mean free path of the corresponding system;
if this is done, we find that the scales in System III are still smaller than those in

System IV.
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The power spectrum P(k) of the momentum field has two components correspond-

ing respectively to the z- and the y-components of the momentum field. They are

defined as

Py = po(k)ps(k)" (3.14)
Py = ﬁy(k)ﬁy(k)*~ (3'15)

where p, and p, are given by (3.5). If the sampling points are chosen to be those given
by (3.10), it can be shown that the part of the momentum field due to the linear shear
profile does not affect the power in the spectrum except at points on the k, axis. Let
the macroscopic momentum field, p(r) be written as p(r) = p(r)yyx + p'(r), where %
is the unit vector along the z-axis and p’ denotes the deviation of the field from the
one due to the linear velocity profile alone. To assess the effect of the linear profile on
the spectrum, we consider the Fourier transform of p(r)yyx, assuming for simplicity

that p(r) is constant:

Y2 ke) — 1 ky _ky ky
/dmf dyp(r)yy exp(ikzz + ikyy) = py <eXp(Z ) )(sz 2 sy |

ks 5
(3.16)

It is seen that the transform is zero when k, = 2nm, where n is an integer not equal to

zero. When k; = 0, which corresponds to setting [=0in (3.10), the sampling points
are k = mk;, where 77 is any integer, and the transform in (3.16) is no longer zero.
Thus the transform is non-zero only when the sampling points lie on the k, axis.

If instead of computing the Fourier transform of p(r) as given by (3.5), we compute

the Fourier transform of p/(r), i.e. the following quantity,

=m Z (Vi — 7y;%) exp(ik - r;) (3.17)

where y; is the y-coordinate of the jth particle in the system, we would eliminate
most of the power at the points on the k, axis. However, the power is not completely
eliminated, since a global trend (i.e. a variation whose length scale is of the order of
the linear dimension of the system) exists in p’ that is due to the fact that the total
momentum of the system fluctuates around zero and may not be equal to zero at

any given time. This fluctuation appears to be thermal in nature and its magnitude
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is O(N~1/?) times the magnitude of the total momentum in, say, the top half (i.e.
0 < y < Ly) of the system. As a result of this fluctuation, the magnitude of the
total momentum in the top half of the system will be different from that of the total
momentum in the bottom half. It is found that the value of p'(k) at the points k
on the y-axis are still about one order of magnitude larger than the power of the
(possibly more interesting) off-axis structures in the spectrum. Hence we have chosen
to ignore the power on the k, axis in the g/, spectrum. Although a global trend may
also exist in pj, its magnitude is very small compared to the trend in p, (since the
mean y-component of the momentum is zero) and it does not pose a problem to the
interpretation of the spectrum. Since we have ignored the power on the k, axis in
the p, spectrum, we have also ignored possible horizontal layering structures in the
velocity field. However, we have checked that the power at large values of k, on the k,
axis (at which the power due to the global trend in 7, is negligible) is small, and thus
there is no horizontal layering in the velocity field beyong the scales corresponding to
the global trend in p..

The spectra P, and P, of the momentum field for System III are shown in Fig.
3.23 and Fig. 3.24 respectively. The corresponding spectra for System IV are shown
in Fig. 3.26 and Fig. 3.27. Fig. 3.23 shows that most of the peaks in P, lie
between 90 degrees and 135 degrees with respect to the positive = direction, with
the stronger peaks lying at angles closer to 135 degrees. Thus, the structure of the
z-component of the momentum field, much like the structure in the density field,
consists of differentiated strips aligned mostly along the extensional axis of the shear.
This structure can be understood as follows: Consider the z-component of the mean
velocity along a line parallel to the z-axis which cuts the alternatingly dense and
dilute strips as shown schematically in the top portion of Fig. 3.25. This velocity
will in general not be equal to the value that is obtained by interpolating between
the values of the velocities at the top and bottom boundaries, but will fluctuate
around the interpolated value. The deviation from the interpolated value will be
smallest at points that correspond to the center of each dense and dilute strip and
will correspondingly be largest at the edges of each strip. The variation of the z

component of the velocity as a function of z is shown schematically in the bottom
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Figure 3.23: The power spectrum, P, of the z-component of the momentum field of

System III.
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System IIIL
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Figure 3.25: The structure of the & component of the velocity field and its relation

to the stripwise organization of inhomogeneities in the density field.

portion of Fig. 3.25. This variation corresponds to the alternation of regions into
which particles are converging, i.e. the denser strips, with regions from which particles
are diverging, i.e. the more dilute strips, with the converging or diverging flows being
strongest at the edges but ‘stagnant’ at the center of each strip. The structure in the
y-component of the momentum field can also be explained in a similar way.

The question arises as to whether the aspect ratio of the flow domain plays a
role in determining the alignment of the microstructure. We have performed other
simulations of shear flows in domains whose aspect ratios are not equal to unity and
have found in all cases that were checked that the alignment of the microstructures
in the system is the same as that in System IIT and System IV. This alignment is

therefore not due to the geometry of the flow domain but is rather a dynamical effect
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System IV.
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System IV.
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Figure 3.28: The dominant length scale Ly/L (where L is the linear dimension of
the system) in the density field as a function of Liv/1 — € ?/o at fixed v = 0.05
(corresponding to A) and v = 0.1 (corresponding to ). The number of particles in

the system is 20000.

due to the compressive and stretching effects of the shear.
We found in Chapter 2 that for a given value of € , an unforced system forms
clusters of typical separation L, given by
[
V1-¢?

where [ is the mean free path in the corresponding homogeneous system. Qur shear

flow simulations indicate that this basic length scale is also relevant to sheared systems
as well. We find that the reciprocal of the magnitude of the dominant wavevector,
proportional to the typical separation between diagonal layers, varies as prescribed
by (3.18) (provided that the system remains relatively dilute). Fig. 3.28 shows
the results of a series of simulations with different & values and two values of the
homogeneous solid fraction, 7, equal to 0.05 and 0.10, the other parameters being
held fixed. It is seen that for a given value of 7, which is equivalent to a given value
of [, the dominant scale as determined from the spectral analysis varies linearly with

Lo. A different slope is obtained when 7 changes. Fig. 3.29 plots the data from two-
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Figure 3.29: Results of two-dimensional simple shear flow simulations presented orig-
inally in Ref. [40] but organized here using (3.18). Here L is the linear dimension
of the flow; d is the particle diameter and A is the dominant length scale observed
in the density field. The data points A, O, A, and O correspond respectively to
v =0.1,0.3,0.5,0.6. The straight lines are drawn through the data points to guide
the eye.

dimensional simulations of simple shear flows obtained by Hopkins and Louge[40].
The data were originally organized in terms of the nondimensional length A/d, where
d is the particle diameter (notation used in Ref. [40]) and X is the dominant scale
obtained by Fourier analyzing the density field. In Fig. 3.29 we have used the new
parameter combinations L/X and Lvv/1 — & 2/d as ordinate and abscissa respectively
(where L is the linear dimension of the system) to organize the data from Ref. [40].
Thus it is seen that the dominant scales observed numerically by Hopkins and Louge
indeed depend on € and v as prescribed by (3.18). Hence we believe that while some
of the details are different for a sheared system, the basic mechanism responsible for
clustering in freely decaying flows as expounded in Chapter 2 applies to shear flows

as well.
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3.2.2 The Distribution of Impact Parameters

The impact parameter, b, is a property of the collision between two particles and is

defined as
|k X V12|

Va1l

b=o (3.19)

where k and vy, are defined following (1.2). The distribution of impact parameters
is an important two-particle statistical characteristic, since it reveals, among other
things, the degree of anisotropy in the microsopic dynamics. It may also be relevant
to the construction of an accurate approximation to the two-particle distribution
function[16]. We have seen in Section 2.3 that the statistics of the impact parameters
in a highly inelastic unforced system indicated that particles within a cluster undergo
mostly grazing collisions as a result of their coordinated collective motion. For simple
shear flows, we assume that the impact parameter distribution, 3(b; p(r)), depends
on r only through the density p(r). Thus we collect statistics in cells whose density
lie in a small window around p. Fig. 3.30 shows that 8(b;p) as a function of b at
fixed p is essentially uniform for all values of b. This uniformity is observed over a
large range of density values and values of € . We believe the uniformity follows from
the fact that in a sheared system the energy replenishing mechanism, i.e. the heating
due to the shear, causes sufficient disorder on the scale of the particle’s size to render
B(b; p) quite homogeneous.

We note that B(b; p) for a fixed p, though largely uniform, is by no means entirely
devoid of structure. Since it is difficult to discern this structure in Fig. 3.30, we use a
cumulative sampling technique similar in spirit to the one used in Chapter 5 for the
single-particle distribution function to accurately measure B3(b; p). This technique in-
volves accumulating the distribution and then fitting the result to a smooth function.

Assuming that £(b; p) is normalized in the usual way, i.e.

/ " B(b: p)db =1 (3.20)
=0
and that the cumulative distribution B(b; p) is defined as
b'=b
B(b; p) = B(b'; p)db’ (3.21)

b'=0
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Figure 3.30: The distribution of impact parameters B(b; p) for a given density window
in System IIL.

then the fit in this case is simply a straight line passing through the origin with
slope equal to 1 /0. Subtracting this straight-line fit from B(b; p), we obtain the result
shown in Fig. 3.31. The graph shown corresponds to a density window that lies above
the average density in the system. From Fig. 3.31, it can be deduced that there is a
small surplus of collisions whose impact parameters are close to o (corresponding to
near-grazing collisions) and a deficit of collisions whose impact parameters are close
to 0 (corresponding to head-on collisions). This trend appears to persist over a large
range of density values. The size of the surplus or deficit in all cases is less than 1%
of the average value of the probability density.

The largely uniform impact parameter distribution in a simply sheared system
contrasts sharply with the impact parameter distribution in an unforced system (cf.
Fig. 2.16). The latter distribution contains a sharp peak at the maximally allowed
value, viz. the diameter of the disk, indicating that the majority of collisions in the
system are grazing collisions. This fact is clearly due to the coherent motion of the
clusters whose constituent particles have approximately the same velocities. Since a
grazing collision dissipates the least energy (as opposed to a head-on collision, which

dissipates the most energy) it is evident that the absence of an energy replenishing
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Figure 3.31: The difference between the cumulative distribution of impact parameters
B(b; p) and b/o as a function of b/c. The data are taken from System III from a given

density window.

mechanism causes the system to organize in a way that minimizes dissipation. In the
sheared system, the tendency for more grazing collisions to occur still remains, but

the forcing creates sufficient disorder to almost completely mask this effect.

3.2.3 The Distribution of Free Paths before Collision

The probability distribution of free paths before collision, P(l,v;r), is defined as the
probability density of finding a particle, prior to its collision at the point r with
another particle, to have traveled along the path 1 with speed v = |v| from the point
of its previous collision. We make the simplifying assumption that the free path
distribution depends on r only through the density, p(r). We define the following
function:

P, a0, p0) = — [ P(tasv, p(e)dr. (3.22)

Q05 Jo=po

PO

where we have used polar coordinates ({, @) for I; the integration is taken over all cells

in the system whose density is po, and €, is the total area (volume) of these cells.
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Figure 3.32: The graph of the angular part of L(l,a;v,p), corresponding to the
function L(l = lnas,;v,p), as a function of . The data are obtained from
System III from a given density window, and the solid curve through the data points

is a fit with an optimal value of o that minimizes that the error in the fit.
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We further define a cumulative distribution based on (3.22):

L(l,o5v,p) = /l'<l /a'<a Is(l',a';'u,p)dl'da'. (3.23)

Using a sampling technique similar to that used for determining the impact parameter
distribution, we found from our simulations that the cumulative distribution has the

following form:

1 — -2
L(l,a;v,p) ~ {—— [tan_1 (ﬁ) +tan™? (a W) +tan™! <a W)]}
2r Qg Qg Qo

x erf ( T(vl—a)) . (3.24)

where erf is the error function; ag is a constant independent of both [ and v, and

the factor 1/27 normalizes the distribution so that L(l = lpes,a = 2m;v,p) = 1
(where 4, is the length of the longest free path in the domain). A plot of the an-
gular part of L(l, a;v, p), corresponding to the function enclosed in braces in (3.24),
is shown in Fig. 3.32. This plot may be understood as follows: granular systems are
highly compressible and are characterized by high Mach numbers, i.e. the ‘thermal’
or fluctuating velocities in the system are much smaller than the typical macroscopic
velocities. Since the mean (i.e. non-fluctuating) component of the particle’s y ve-
locity is zero, the displacement along the y direction between collisions will be small
compared to the corresponding displacement along the z direction, which is deter-
mined by an externally imposed shear with relatively large characteristic velocities.
Hence the free paths are mostly parallel to the streamwise direction, i.e. they are
concentrated around angles of 0 and 7 relative to this direction. A plot of L(I, c; v, p)
as a function of [ for a fixed value of a is shown in Fig. 3.33. It is found that (v, a)
appearing in the argument of the error function in (3.24) depends only weakly on «a
and v. This dependence can be dropped without affecting the accuracy of the fit.
Hence we find to a good degree of approximation that

1 1 1

1
2004/ 14 (:_0)2 + - (u)z +

@Q

« \/? exp (%) (3.25)

P(l,a;v, po)
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where [y is a characteristic cross-over length independent of /,v and a whose meaning
will be made clear below. If we focus on the distribution, P(l) of the magnitude [ of
the free path without regard to angle, we find that

2T
P(l) = / _P(l,av,p)dof

[
= ([ exp (E) (3.26)

This distribution is different in the low [ limit from the distribution that is derived
from the (conventional) assumption that the probability of a particle colliding after
traveling freely for a distance [ is independent of I. This assumption implies that P({)
should decay exponentially in [ for all . Heuristically, the explanation for (3.26) is
that for short [, the particle samples a small volume whose typical density may be
very large (larger than the average density) because of density fluctuations. Hence
the probability of the particle colliding in such a small volume, or, equivalently,
the probability for short [, is larger than the value given by the exponential. Our
numerical simulations of dilute elastic gases indicate that (3.26) holds for these gases
as well.

To derive (3.26), we first note that the average solid fraction, 7, is given by
v ~ no? (3.27)

where 7 = N/A is the average number density for N disks in a system of total area
A, and o is the linear dimension of a disk. The probability of finding a particle in
a box of size o is the ratio of the number of particles to the number of boxes, i.e.
N/(A/o®) ~ v. Thus the probability of finding no particle in a rectangle of length I
and width o is (1 — #)"/. When the rectangle is small, the fluctuations in the number

of particles in it are large. If 72 is the number of particles in such a rectangle, then

m=nloc=7v

(3.28)

Q |~

and a typical fluctuation in m is

§my ~ \/m = oL (3.29)

ag
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Figure 3.33: The graph of L(l,a;v,p) as a function of [ at a fixed value of a. The
data are obtained from System III from a given density window, and the solid curve
through the data points is the function erf(y/l/]) with an optimal value of I that

minimizes the error in the fit.
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Since dm, > m when vl/o < 1, the typical solid fraction that the particle samples

when [ is small is
§myo? vo
o T (3:30)

The condition 7l/0 < 1 can also be cast as [ < lo, where lp = 0/¥ is the mean free

Vg ~

path. Under this condition, the probability of finding no particles in a box of length

— l/o
(1 — )" = ( - ?) A exp (— %) (3.31)

Hence the probability that the free path is larger than [ is

{
P(free path > [) ~ exp (_‘/T> <y (3.32)
0

and the corresponding probability density for [ is

9
ol
1
lo

l1is

P(free path =1) = [1 — P(free path > [)]

~

1<l (3.33)

3

When [ > Iy, the fluctuations in density are negligible, and hence v ~ 7, in which

case,

P(free path > 1) ~ (1 — 7)/ ~ exp (—;) > (3.34)

0

and the corresponding probability density for [ is
1 [
P(free path = 1) ~ 7 exP <—l—> > 1. (3.35)
0 0

Notice that (3.33) and (3.35) matches at ! = l. Hence the asymptotically matched
expression for the probability density over the entire range for [ is given, up to nor-

malization, by
1 !
P(free path =) ~ %exp <_T) (3.36)
0

in agreement with (3.25).
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3.3 Summary

The numerical simulations of simple shear flows presented in this chapter show that
a stripwise clustering microstructure may arise when the mean flow is non-transient.
This microstructure, which is only one of the several types of microstructures ob-
served in simple shear flows, consists of elongated clusters organized into strips with
a prefered orientation along the extensional axis of the shear. It is created by means
of a transient linear instability and two nonlinear processes, viz. a clustering instabil-
ity and a strongly nonlinear cluster scattering process. The scattering of clusters into
each other is driven by convection due to the shear, while the clustering instability
causes particles temporarily dispersed by the scattering to reaggregate to form new
clusters. Thus clusters are continually destroyed and recreated in the flow, leading
to a highly time-dependent microstructure. The stability properties of simple shear
flows relevant to clustering are examined in more detail in Chapter 4. A spectral
analysis shows that for a given value of the coefficient of restitution, &, the dominant
spatial scale, Lo, corresponding to the separation between clusters, is given by (1.1),
in accord with the results of Chapter 2 for free systems. This result, together with
numerical observations presented in this chapter, provides the basis for our belief that

the underlying clustering mechanism for both free and sheared systems are the same.



Chapter 4

Instability and Multistability in

Granular Shear Flows

In this chapter we show that the time scale for the clustering process in a sheared
system is inversely proportional to the average granular temperature in the system.
The degree of clustering (as measured by, say, the amount of inhomogeneity in the
flow) depends significantly on the rate of this process relative to those of competing
processes such as diffusion and convection. Consequently, a sheared system in which
the granular temperature is relatively high (e.g. one prepared in an initial state whose
average granular temperature is much higher than that in the statistically steady state
to which the system evolves eventually) exhibits a markedly different dynamics from
one in which the temperature is low, all other externally imposed parameters for the
two systems being the same. This is one of the sources of hysteretic behavior in
granular systems. It leads to the existence of multiple steady states which correspond
to the same external parameters but which are characterized by very different mi-
crostructures. To explain the hysteretic behavior, we first perform a linear stability
analysis of simple shear flows which shows that such flows are transiently unstable.
Then we show that the transiently growing modes initiate nonlinear growth that
leads to clustering. We examine the various time scales characterizing the dynamics
of fluctuations, paying particular attention to the dependence of these scales on the

initial condition and also to the way they determine the ultimate, long-time fate of

113
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the system. The results of numerical simulations are then used to demonstrate the
variance of the steady state with respect to the initial conditions and the application
of transient forces. Finally, other possible mechanisms for multistability are briefly

discussed.

4.1 Transient Linear Instability of Shear Flows

We have seen in earlier chapters that the continuum equations for granular flows
derived using kinetic theory have been moderately successful in explaining results
of numerical simulations, although they fall short in respects having to do with the
fact that microstructures (i.e. strong inhomogeneities) were not taken into account
in their derivation. It seems that these equations can nonetheless by used success-
fully for the analysis of the dynamics of microstuctures in nearly elastic and nearly
homogeneous systems. A stability analysis of these equations for the case of an un-
forced system presented in Chapter 2 reveals that homogeneous solutions exist but are
are unstable to infinitesimal inhomogeneous perturbations. The analysis also shows
that a nonlinear instability is responsible for the clustering process. Shear flows in
both two- and three-dimensions, unlike unforced flows, are linearly stable, though
some eigenmodes may grow for a finite time before reverting to temporal decay. This
transient instability was found to exist in homogeneous states in which the velocity
profile is linear[48, 49, 50|, and it is expected that a similar phenomenon exists in
more complex setups as well. The stability analyses show that the orientation of
the wavevector that correspond to the (transiently) most unstable mode coincides
approximately with the extensional axis of the shear. This mode corresponds to dis-
turbances in real space that are parallel to the compressional axis of the shear, ie.
at 135 degrees from the streamwise direction. Note that the microstructure in the
nontransient state has a prefered orientation in real space along the 45 degrees direc-
tion, contrary to what one may expect from the transient stability analysis. It turns
out that the next transiently most unstable mode corresponds to disturbances in real
space that lie along the 45 degrees direction. At early times, disturbances grow in

both directions until the nonlinear instability takes over, accenting the growth along



4.1 Transient Linear Instability of Shear Flows 115

the 45 degrees direction and and suppressing the growth in the 135 degrees direction.
Our analysis and numerical results to be presented in this chapter corroborate this
picture of the dynamics.

A plot of the particle configuration in a typical simple shear flow is shown in
Fig. 4.5. The flow is statistically stationary and contains a stripwise clustering
microstructure whose features have been studied in detail in Chapter 3. The mech-
anism responsible for the emergence of clusters in this system can be elucidated by
considering the linear stability of the equations derived using kinetic theory in [51]
for two-dimensional flows of monodisperse inelastic disks. In the low-density limit,

which is the regime we are considering, these equations read:

v (T + 'u,-a,-T) = ﬁa@ (\/T@,T) — vTO,v;

2
VT A2 8 v° 3/2
-— D: — ——¢€T 4.1
+ 16 oVT Tr VT g € (4.1)
I/(’ljj +v,'6,'vj) = —6,- (VT)

T
+ —\2—70' (6,\/T) (a,"l}j + 6,-1;,- — 51']'8[1)1)
+ ﬁax/f Av; (4.2)
8
v = —6,' (V’l),') (43)
where T is the granular temperature and v is the volume (area) fraction of the particles
(i.e. reduced density) which equals p/p, where p is the density and p, is the mass
density of a solid particle; o is the diameter of a particle and 8; denotes 8/8r;, where
2 = 1,2 indicates the Cartesian components of the position vector r. The summation
convention for repeated indices is assumed. The coefficient of restitution, &, appears

ine=1-¢% and Trbfj is the viscous heating function given by
TrD}; = 2 |(85v:)(8iv;) + (8;:)° — (Brwn)?] . (4.4)

Equations (4.1)-(4.3) admit a basic solution with constant volume fraction vy,
constant temperature Ty and a velocity field v = (yy, 0). The value of T} is determined
by the balance between the rate of input of energy through viscous heating and the

rate of loss of energy through inelastic collisions. This balance is between the third
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and fourth terms on the r.h.s of (4.1), and it yields
To = — (4.5)
where [ = w0 /81, is the mean free path in the basic state.

The linear stability of shear flows governed by equations derived from kinetic the-
ory, which are similar to (4.1)-(4.3), has been investigated before[48, 49, 50]. In Refs.
[49, 50], the linearized equations are analyzed by first transforming them to coordi-
nates which travel with the local mean flow and then by performing a Fourier trans-
form of the resulting equations. This procedure eliminates the coordinate-dependent
convective terms in the original linearized equations, at the price of defining modes
in terms of time-dependent wavevectors which are continually rotated by the mean
shear. The resulting equations are not self-adjoint. Disturbances evolving from ¢ = 0
are found to grow for short times (the growth rates depending on the nature of the
variables used in the analysis, a point discussed in [53]) and then decay. An elaborate
analysis presented in [48] shows rigorously that simple shear flow is asymptotically
linearly stable, though there can be transient growth of infinitesimal disturbances.
Here we consider the transient evolution of infinitesimal disturbances of the basic
state for times which are short enough for the effect of convection to be negligible. It

is easy to see that the typical convective time scale is

For times much shorter than 7., fluid elements in the system may be considered to
be unaffected by the mean flow and hence the convective terms in the equations may
be dropped to a good degree of approximation.

In the following, it is convenient to nondimensionalize (4.1)-(4.3) by defining

P= (4.7)
t = 4t (4.8)
_ T

V= (4.10)
po= Vi (4.11)
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It is also convenient to introduce the dimensionless quantity

l
Ly/e

which, as shown below, corresponds to the ratio of the typical separation between

6* =

(4.12)

clusters to the linear dimension of the system. The infinitesimal disturbances 6T, §7,

8V of the basic state are defined by

T = 1+6T (4.13)
b= 1460 (4.14)
Vo= g+ 6V (4.15)

Linearizing (4.1)-(4.3) in the disturbances and dropping the convective terms, we

obtain
. ) 4\/25*2
6T = —divév — 2v/ebv — /6T + 2+/€(016vq + Oa6v1) + AT (4.16)
T
2
5’Uj = ——5*2 (6]-51/ + (9]5T) + \/5—5 (5}'1625T + 5]'2615T) —+ £5*2A5’U]' (4:.17)
s T
bv = divév (4.18)

where ;; and é;, are Kronecker deltas, and the tildes on the disturbances have been
dropped for notational convenience. Assuming eigenmodes of the form exp(zk - + st)

where k = (k cos 8, k sin 8), and substituting (4.8)-(4.15) in (4.16)-(4.18), one obtains:

§v —Yege2g? 0
§vs 0 Ve
° dv B —1kcosd —1ksin 8
8T 1k(24/esin — cos §) 1k(2y/ecos b — sin f)

—16*?kcos 8 ik (ﬂ“;g —6*2cos 0) bvy
—i6%ksin0 ik (Y20 525ing) | | bu,

0 0 v
—24/€ —y/€— f—r\/E&*zkz 6T

Let § = &%k, which in dimensional units is equal to (27nl/L\/€) for the nth

(4.19)

mode in k-space, and consider the limit § < 1. In practice, this is usually the limit
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of interest, since the dominant wavelengths L/n for relatively inelastic systems are
found in the numerical simulations to be such that § < 1. The characteristic equation
corresponding to (4.19) is

st 4 <\/E—|~ 952\/5) s3 + {52 [2 — \/E(2+ %) sin 26 + ge] + %i—} s? +

52 esin26 . |23/ g_\/_E_ (L_l_ )sin20 463/256
Kz T 272
B 263/2
| [

T2

%4 76
6 e] 46°¢ — 0 (4.20)

54
cosfsin 8 + ¢ (1 —25in20)2 -+
T

T 2
The full solution of (4.20) can be obtained numerically, and solutions for the largest
positive root, s, for /e = 0.8 are shown in Fig. 4.1 and Fig. 4.2. These graphs
show that for small values of 6, Re[s,,] is largest when 6 = 37 /4. For larger values
of 8, a cross-over occurs and Re[s,,] becomes largest when 6 = r/4. The directions
of maximal growth are interchanged again at still larger values of §. The solution
for sm as a function of both /e and § at fixed § = 37 /4 is shown in Fig. 4.3; and
the solution for s, as a function of both § and & at fixed /e = 0.8 is shown in
Fig. 4.4. A detailed numerical study of the solutions of (4.20) shows that Re[s.,]
is positive in the range 0 < § < 1 for all values of /e less than approximately 1/.
The directions of maximal growth are also found to remain in either the § = /4 or
0 = 3 /4 directions. The real parts of the other roots of (4.20) are either negative or

much smaller in magnitude than Re[s,].

For the case § < 1, we may neglect terms in (4.20) of order &° or higher to obtain
6 - = 1
s* 4 (\/E+ —52\/2) s34 62 [2 — \ﬁ(2 + 2—) sin 26
s s

43 ] s? + 82 (Esmw - e)s+(9(53) ~0 (4.21)

™ ™

Equation (4.21) allows for a perturbative study of its solutions through which the
stability properties of the problem can be made more transparent. Noting that one
root of (4 21) is s; = 0, we seek solutions for the other roots as series in 62 and &:
Sy = Y02, a,6°" and 534 = Yoo b,6™. A substitution of the this ansatz into (4.21)

yields the following solutions:

s2 = —e+ [i— e (2+ %) sin28] 52 + O(8%)
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Figure 4.1: The real part of s, as a function of V8 at fixed 6 = 7/4 (solid line) and
§ = 37 /4 (dotted line). The value of /e is 0.8.

Figure 4.2: The real part of s,, as a function of 8 for § = 0.5 (solid line) and § = 0.1
(dotted line). The value of /€ is 0.8.
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Figure 4.3: The real part of s,, as a function of \/e and § at fixed § = 37 /4.

Sq

For small values

(4.22)
= 41— ——\/Esjrn% 5+ 0(8%) (4.23)
= —4/1— ‘[G—S:ﬁ 6§+ 083 (4.24)

of §, it is seen that the only growing mode corresponds to s3 and

that the maximal growth rate occurs in the § = 37 /4 direction. For long enough

wavelengths, transient linear growth in real space is largest at 45 degrees from the

streamwise direction; for intermediate wavelengths, the growth rate is largest at 135

degrees from the streamwise direction (note that the direction of the wavevector of a

mode is at right angles to the direction of the strips of equal phase in real space).

4.2 Nonlinear Mechanism and Multistability

We next outline a nonlinear mechanism which is initiated by the transiently growing

linear modes and which we believe is the mechanism leading to cluster formation in

sheared systems.

A large enough granular system, and therefore one having a large

number of degrees of freedom, experiences statistical fluctuations of every macroscopic
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Figure 4.4: The real part of s,, as a function of  and § at fixed \/e = 0.8.

physical quantity except those that are strictly conserved. Consider a sheared hard-
disk fluid at an ‘initial’ temperature 7;. Such a system may have a shear fluctuation of
the form év = (0,vo sin kz), where k is consistent with periodic boundary conditions
in a finite domain. Since equipartition is expected to hold during early times before
the dynamics of the system becomes dominated by clustering, the typical amplitude vy
of such a fluctuation can be estimated by computing the energy stored in the velocity
field corresponding to this fluctuation and comparing the result to mT}, which is the
energy per degree of freedom (m is the mass of a particle). It is easy to show that the
energy E, stored in a single shear mode év = (0,vosin kz) is E, = pv2L?, where L is
the linear dimension of the flow domain. Thus, E, ~ mT; implies that vy ~ m,
where N is the total number of particles in the system, and therefore the typical
magnitude of

h = 06v,/0z (4.25)

is h ~ ky/T;/N. Let the value of k™! correspond to the expected dominant length
scale (i.e. the intercluster separation; see below). If we assume that k™! is long enough
so that diffusion effects can be neglected with respect to viscous heating and inelastic

dissipation (an assumption to be verified a posteriori) then we can approximate (4.1)
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by:

. R 2
v o~ \1/—67?0\/T TeD? - \%-”U—ETW (4.26)

Note that we are still considering the dynamics of the system at early times when
the effect of convection can be neglected. Consider firstly the case when the initial
temperature T; is so large that A is large compared to . This happens when T;
is much larger than 7o, the asymptotic value of the temperature given by (4.5) (the
more precise statement of the condition is T; > \/NTO). The viscous heating function
in this case can be approximated as follows

2
TrD?; = 2(y + h)* ~ 2A (1 + 2%) +0 (%) h > 4. (4.27)

Assuming that the density can be considered to be fixed in (4.26) and that the
shear fluctuation is practically stationary with respect to the rate of decay of the
temperature to its asymptotic value (assumptions again to be justified a posteriori),

it can be shown that the solution to (4.26) is

T(t) = g%A(t) 1+ ghl} + O(Z—z) (4.28)
where (—Jeht) )
1 — aexp(—+/€ht
A(t) = [1 m aexp(—\/Eht)} (4.29)
and

o= [1 _ ,/n/(zzhz/we)] / [1 + /Ty /We)] . (4.30)

This solution is obtained using a series of substitutions similar to (2.41)-(2.44). The
condition that the diffusion term in (4.1) can be neglected relative to, say, the inelastic

dissipation term can easily be shown to be
kl < /e (4.31)

The condition that diffusion is slow relative to the rate of saturation of 7'(¢) to its final
value and that the shear fluctuation is quasi-stationary turns out also to be equivalent
to (4.31). This result, already derived in Section 2.4.3 for free systems, is physically
plausible since diffusion is important only at large k, and the shear fluctuation, being

of hydrodynamic scale, can decay only by a diffusive (i.e. viscous) mechanism. When
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v/h < 1, the temperature rapidly saturates to the value dictated by the (local)
velocity field corresponding to the shear fluctuation and a corresponding temperature
gradient is formed in the system. As a result, a pressure gradient is established as

well, its value being given by

I’h?
P =puT ~ p,v—A(t). (4.32)
TE
Since | = 70 /8v, we have
P ~ p,0?h?/ev (4.33)

i.e. the pressure that is established is inversely proportional to the density. Thus the
pressure in dense regions is low relative to the pressure in dilute regions, causing mass
to be transfered from the latter into the former. The excess of mass causes the dense
regions to cool at a faster rate (since the collision rate there is increased), causing a
further reduction in the values of the pressure in them and thus to a further mass
flow into them. All in all, a small departure from a state of uniform density will
generate an internal pressure difference that amplifies the departure, leading finally
to the formation of high density clusters. For clustering to be possible, the mass must
agglomerate at a faster rate than that of it being stretched apart by the mean shear,
and fast enough to render diffusive processes inefficient. The time scale for mass
motion leading to clustering can be estimated from the part of (4.2) which contains

the pressure induced forces alone:
pv = —VP, (4.34)

Using (4.3), it follows that
5=AP (4.35)

and the time scale, 7,,, for mass motion is easily seen to be

1 [p e

The condition that 7,, be shorter than the convective time scale 7, given by (4.6) is

therefore: (y/h)y/e < kl. When this is combined with (4.31), we have

\/E% <kl<fe (4.37)
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Notice that h depends on T; and hence its value can be made large enough so that
¥/k < 1. Thus the condition (4.37) on k can be easily satisfied. In fact (4.37)
also encompasses the assumption in the linear analysis that the mean flow may be

considered static on the time scale for linear growth, since from (4.23) we have

1/ss~ Velkly (4.38)

and 1/s3 < 1/v implies that kl > \/e. Since 7, is shorter the larger the value of k (it
takes less time for mass to move a distance k7! the shorter the distance), the fastest
and dominant clustering process will occur at the largest allowed value of k. Thus the
clustering process occurs on the scale determined by kI ~ y/e. Since mass accumulates
at the minima of A (where the temperature is lowest), this scale corresponds to the
typical separation between clusters in the flow.

The case y/h > 1 (i.e. T; < T,) can be analyzed in a similar way and the

corresponding conditions on k are

k> \/g\/é (4.39)
kl < /e (4.40)

Condition (4.39) follows from the requirement that the time scale 7, for mass motion,

v [AVE
. \/;kh’ (4.41)

to be shorter than the convective time scale 7.. It can be shown that (4.40) is

which in this case is given by

simultaneously the condition for the quasistationarity of the shear mode relative to
the local dissipative processes and the condition for neglecting the diffusion term
in (4.1). Clearly (4.39) and (4.40) cannot be satisfied simultaneously, and thus no
clustering is possible at early times. Indeed, in this case, numerical simulations reveal
growing modes in both the 45 and 135 degrees directions in the density field during
early times yet no clustering. In contrast, when v/h < 1, the nonlinear instability
sets in much before the linear modes have a chance to significantly grow in amplitude.
The mass motion is so fast that large clusters are formed and they rapidly coalesce to
form extended regions of high density, thus masking out the transient growth of the

linear modes. For the case v/h > 1, clustering is possible at later times when T'(2)
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increases to its asymptotic value, but mass that agglomerated is also quickly dispersed
by convection. When this happens, the quantity \/’W is no longer arbitrarily large
but takes an O(1) value which allows (4.39) and (4.40) to be satisfied simultaneously.
This again implies a scale for the clustering process determined by kl ~ /e. The
microstructure in this case (shown in Fig. 4.5) consists of moderately dense and
interspersed clusters which are continually dispersed and recreated in the flow. The
clusters also scatter continually into each other as they are being rotated and stretched
by the mean shear, resulting in a highly time-dependent microstructure. It is noted
that the stripwise organization of the clusters as shown in Fig. 4.5 persists despite
the strong time-dependence. This organization is stabilized by a complex mechanism
involving the interplay of mass agglomeration along the extensional axis of the shear,
convective dispersion and cluster-cluster scattering, the details of which have been
presented in Chapter 3.

To reprise, the two flow states shown in Fig. 4.5 and Fig. 4.6, which are reached
by the system asymptotically after long times, correspond respectively to the case
in which T; < Ty and that in which T; > T,. The flows shown will respectively
be refered to as the ‘quasihomogeneous’ flow and the ‘plugged’ flow. The numerical
simulations show that the dynamical history of a system that converges to the quasi-
homogeneous flow is significantly different from the history of one that converges to
the plugged flow. In the former system, clusters appear uniformly and simultaneously
throughout the system and are dispersed by convection and scattering on a time scale
that is comparable to the time scale for the mass agglomeration that creates them.
Since clusters are ‘mass attractors’ and two clusters close together will coalesce, the
fact that the agglomeration time scale is comparable to the dispersive one ensures
that a stronger clustering effect does not occur and that the system remains quasi-
homogeneous asymptotically. This is not the case for the plugged flow, since the
initial mass agglomeration time scale, being inversely proportional to the square root
of the transient temperature, is so fast that convection by the mean shear has no
time to act on the clusters that are formed. Nevertheless, convection in this case
plays a role at later times by gradually sweeping the clusters together and causing

them to coalesce into extended regions of high density. Thus, we see that the history
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sEE.

Figure 4.5: The particle configuration of a quasihomogeneous shear flow at steady
state on which a vector plot of the velocity field is superposed. The parameters

characterizing the flow are: € = 0.6, vy = 0.05, N = 20000.
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Figure 4.6: The particle configuration of a plugged shear flow at steady state on which

a vector plot of the velocity field is superposed. The parameters characterizing the

flow are the same as those of the flow shown in Fig. 4.5.
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dependence or hysteresis in shear flows arises because of the dependence of the time
scale for mass agglomeration on the transient temperature. When this time scale is
short, most of the mass of the system becomes rapidly entrapped in clusters, leaving
a very dilute and voluminous ambient that has little further dynamical effect. The
subsequent dynamics of the system becomes dominated by the dense clusters that are
formed. When the time scale for mass agglomeration is comparable to those of the
convection and diffusion, the latter processes continually rehomogenize the flow and
all three processes competitively determine the dynamics of the system, rendering it

quasthomogeneous but highly time-dependent.

4.3 Other Routes to Multistability

In addition to the ‘quasihomogeneous’ and ‘plugged’ flow states discussed above, a
simple shear flow can exhibit yet another stable flow state that is characterized by the
same set of external parameters. This state can be reached by changing the shear rate
instantaneously or incrementally from one value to another; or by shearing the system
from an initial condition corresponding to that of a regular gas in static equilibrium.
The shear rate is changed by increasing or decreasing the velocity difference between
the periodic images of the system adjacent to the top and bottom boundaries. A
change in this difference introduces a velocity differential between the boundary and
the interior of the system, thereby increasing the magnitude of the velocity gradient
in regions near the boundaries. Note that reducing the velocity difference between
the periodic images could also (temporarily) increase the magnitude of the velocity
gradient. This increase causes the rate of viscous heating to increase as well, thus
increasing the internal kinetic energy of the regions near the boundaries. The pres-
sure is raised as a result, and mass is pushed towards the center of the system. As
the velocity differential diffuses into the system, the heated regions increase in size,
sweeping particles into two thick streamwise layers of elevated density at the edges
of the heated region. These layers span the length of the system as shown in Fig.
4.7. The elevated density increases the rate of collisions in the layers, lowering their

temperature and causing their pressure to drop even further, thus drawing even more
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mass into them. The layers converge at the center of the system after some time as
shown Fig. 4.8, creating a dense but still fluidized plug surrounded by extended, di-
lute and energetic regions on both sides. After its creation, the plug persists because
of the macroscopic heat flux originating near the boundaries and directed towards the
centerline, which maintains a persistent temperature gradient in the system. Mea-
surements of the heat flux[16] show that the flux vectors near the boundaries mostly
point towards the center of the system. These fluxes produce a steady flow whose en-
ergetics involves the diffusion of kinetic energy generated near the boundaries towards
the centerline where most of the dissipation takes place.

We have discovered yet another route to multistable states in shear flows which
involves the application of a transient periodic perturbation to the shear rate. The
set-up consists of adding a small but finite sinusoidal perturbation (whose period is
long relative to the average time between collisions of a particle) to the velocities of
the periodic images of a system that has converged to a quasihomogeneous state. The
perturbation is applied for several periods before they are switched off, reseting the
shear rate to it original value. We found that for sufficiently strong perturbations,
the system cannot ‘recover’ from the large changes in density that are induced near
the boundaries by the perturbation and it lapses into a state that resembles the one

shown in Fig. 4.8. A more detailed investigation of this set-up is given in Ref. [16].

4.4 Summary

We have shown that the uniform state of a dilute simple shear flow is transiently
unstable and that the most unstable modes lie along the compressional and exten-
sional axes of the shear. These modes initiate a nonlinear mechanism that leads to
the formation of clusters whose typical separation is I/y/e. The source of hysteresis in
shear flows is explained in terms of competing time scales whose relative importance
is.determined by the character of the transients affecting the flow. Although we have
demonstrated the hysterectic effect using the contrasting scenarios of extremely high
and low temperatures for the initial state of the shear flow, one could use less arti-

ficial transients, such as those that are imposed externally, e.g. impulsive motion or
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Figure 4.7: The particle configuration of an incrementally sheared system at an
early time after the lapse of 20 collisions per particle following a static and ho-
mogeneous initial condition. The velocities of the periodic images are given by
U = +Uy[1 — exp(—t/7)] where Us is a constant and 7 is a characteristic time chosen
to be much longer than the collision time in the system. A vector plot of the velocity
field i1s superposed. The parameters characterizing the system are the same as those

of the system shown in Fig. 4.5.
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Figure 4.8: The particle configuration of the same incrementally sheared system as
the one shown in Fig. 4.7 but after long times. A vector plot of the velocity field
is superposed. The layers are seen to have converged to a plug in the center of the

system.
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rapid shear heating near a boundary, that could trigger the effect. Indeed it is found
that a system incrementally sheared from a static configuration develops eventually
into another stable flow state distinct from the ones produced by varying the initial

temperature of the system.



Chapter 5

The Single-Particle Distribution

Function for Granular Shear Flows

In this chapter we show that the single-particle velocity distribution function for a
two-dimensional simple granular shear flow has the form of an exponential function
of a second-order polynomial in the norm of the fluctuating velocities with angle-
dependent coefficients. This form is markedly different from the Gaussian (with
corrections taking into account the state of shear) or the generalized Gaussian distri-
butions which have been used in kinetic theories of granular flows. In particular, it
is nonanalytic in the Cartesian components of the fluctuating velocities. This result
is obtained from molecular dynamics simulations involving hundreds of thousands of
particles by means of a cumulative sampling algorithm which is effective in filtering
the noise inherent in the numerical data. Less massive numerical simulations per-
formed in the past cannot effectively be used to determine the distribution function
because of the noise in the data and because small granular systems are qualitatively
different from large ones. The cumulative sampling algorithm is separately applied to
different ranges in the pertinent variables, such as the density and granular temper-
ature, thus accounting for the fact that the flow is inhomogeneous. The implications
of the form of the distribution function obtained on theories of granular flows are

discussed.

133
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5.1 Accurate Determination of the Distribution

Function

A proper theoretical understanding of rapid granular flows requires the knowledge of
the appropriate statistics, and in this respect the single-particle distribution function
1s an object of central importance. For dilute flows, this distribution function should
be deduced from a Boltzmann-like equation which accounts for inelastic collisions
(this equation is only ‘slightly’ different from the standard Botzmann equation). The
solution of this equation is a nontrivial task, since detailed balance does not exist in
the microscopic dynamics. The alternative is to study the single-particle distribution
function in numerical experiments involving basic flow configurations (such as simple
shearing). Despite its importance, this distribution function has not previously been
accurately measured from numerical simulations. The reason for this seems to be
that previous numerical studies of sheared systems (e.g. Ref. [44]) could not generate
sufficient statistics to accurately deduce the distribution function. Under some rather
restrictive assumptions, such as those of spatial homogeneity, isotropy and molecular
chaos, a closed kinetic equation for this function was obtained and solved using a
Monte-Carlo method[54]. The assumptions used in deriving the kinetic equation in
Ref. [54] do not take into account the inhomogeneous nature of granular flows in

general and the effects of microstructures in particular.

5.2 Cumulative Sampling Algorithm

Here we present a new algorithm that accurately determines the single-particle distri-
bution function from data obtained in the simulations. This function will be denoted
by fi(r,v;t), where r and v denote the position and fluctuating velocity respectively
and t denotes the time. The algorithm is based on the observation that a mono-
tonic integral of a noisy positive-definite quantity is comparatively less susceptible
to distortion by noise and poor statistics than the quantity itself and may thus be
fitted more readily to smooth functions. The relevant integral here is a cumulative

distribution function, to be defined below, which corresponds to an integral of f;.



5.2 Cumulative Sampling Algorithm 135

This integral is constructed from data, then fitted to an appropriate smooth function
which is then differentiated. The resulting function is still smooth and can be fitted
again to a different functional form that is more convenient than the one used in the
first fit. The second fit, though simpler, will be no less accurate since the noise in the
data has already been eliminated with the first fit. Thus, the problem of noise in the
data is overcome by a two-tier fitting procedure, and the problem of poor statistics,
which can be serious in regimes of very low and very high |v|, is alleviated by the
use of a cumulative sampling technique. The quality of the statistics improves as
more configurations (‘snapshots’ of the system) are used in determining f;. The use
of several configurations corresponding to different times is justified since the flow is
statistically steady.

We assume that the shear flow is statistically stationary in time so that fi(r,v;t)
is not an explicit function of time. It is well-known that the single particle distribution

function can be represented as:

fi(r,v) = (; 8(r — r;)8(v — v;)) (5.1)

where r; and v; are the position and velocity of the i-th particle and (- - -) denotes an
average over a statistical ensemble of systems characterized by the same parameters
as the one of interest (in contrast to Section 1.4.3 in which (---) denotes an average

over particles in a cell). The function f; obeys the normalization

[ vy = (36~ r) = p(r) (5.2)
/r/vfl(r,v)dvdr - N (5.3)

where p(r) is the number density; and the subscript v denotes integration over velocity
and the subscript r denotes integration over the coordinates. Since the mean velocity
field corresponds to linear shear, it is reasonable to assume that f; depends on the
position r through the local density, p(r), the local temperature, T(r), and the local
mean velocity, V(r). Also, f; should depend on V(r) through the difference v—V(r).

All in all, we assume that f; can be written as

filp(x), T(r),v) = FD(p(r), T(x), v = V(r)). (5.4)
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Notice that f(!) is assumed not to depend ezplicitly on the gradients of the velocity,
temperature and density fields. This does not imply that f{!) does not depend on
these gradients; rather it is assumed that if in a statistically steady state of a specific
system there is a one-to-one correspondence between the values of the fields and
their gradients, then f() will depend implicitly on the latter. That 1s, if the density,
temperature and fluctuating velocity in a coarse-graining cell are given, then their
gradients within the cell are implied. Note also that the gradient of V(r) is found to
be highly uniform in the system (cf. Section 3.1.4). Hence we regard this gradient as
a fixed parameter of the problem, viz. the shear rate 4. Our assumptions are justified
a posteriori by numerical results obtained by applying the algorithm. We note also
that f(1) depends on the parameters defining the system, though this dependence is
not made explicit in (5.4) for the sake of notational simplicity.

Notice that the above assumptions does not imply a decoupling of the spatial
and velocity distribution functions. On the contrary, since values of the density and
temperature are taken to determine the values of their gradients, a strong correla-
tion between the spatial and velocity distributions is implied. The physical basis for
this lies in the particular structure of the statistically steady state of the shear flow
which we are considering here: A point in the flow is inside either a cluster or a
dilute region, or it is at the ‘interface’ between a cluster and the dilute region imme-
diately surrounding it. In each case, the density and temperature are in one-to-one
correspondence with the location of the point. Hence the values of the density and
temperature determine the local gradients of these quantities.

It follows that f() can be determined, for given values of the density P = po
and temperature 7' = T, by collecting statistics in regions of the flow whose density
and temperature are simultaneously po and Ty respectively. In practice, one has
to define small windows in the density and temperature that are centered around
predetermined values of these quantities so that statistically significant results can
be obtained. Hence the sampling procedure consists of the following steps: (1) The
system is divided into cells and the temperature and density in each cell is determined
as explained in Section 1.4.3; (2) the cells whose temperature and density lie within

the predetermined windows are identified; (3) a process of ‘binning’ the fluctuating
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velocities of the particles in these cells, in terms of the norms and polar angles (relative
to the streamwise direction) of these velocities, is performed (the fluctuating velocity
is computed by subtracting the velocity of the particle from the average velocity of
all particles in the cell in which the particle resides). The information obtained from
the binning process is used as described below.

Let Q,, 7, denote the total area of the cells whose density lies within a window
around py and T . Let S(po,To) denote this set of cells. Also let f(l) denote the

numerical approximation to f(!) given by

[0, Tov = V() = g [ O, T, = V(s (55)
= (Qpl:r /S(po'To)Zé(r——r,-)5(v—v1-)dr> (5.6)
= (g X sv-w) (57)

Po,To ie5(py,To)

where the integrals in (5.5) and (5.6) extend only over those cells whose values of
the density and temperature are within the predefined windows around po and T
respectively. The index ¢ in (5.7) runs only over the particles in these cells. As
mentioned, (...) denotes an average over an ensemble of realizations; in practice it
means averaging over a series of snapshots of the system. The volume Q, 1, is
included in the ensemble average because it may vary from one system to another
in the ensemble. For notational simplicity, we drop the subscript 0 in py and in Tp
and introduce p = N,7/Q, 1, where N, r is the total number of particles in cells of

density p and temperature T'. For narrow enough windows it follows that:

DN > | (5.8)

fNp, T, v = V(r)) —p<

Let v/; = v; — V(r;) denote the fluctuating component of the velocity of particle 3.

Then it is easy to see that f(l) can be rewritten as follows:

1 1
o 2 5(v — v,.)> . (5.9)

ﬂWmﬂﬂ=p<

The advantage of (5.9) is that it is not coordinate-dependent in an explicit way and as

such it is convenient for demonstrating that the distribution function depends on the
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thermodynamic parameters and local velocity fluctuations. We define the function

FO(p, T,v) =

1
8(v —v; 5.10
3y S A=) (5.10)
which is related to (5.9) in an obvious way. The cumulative distribution function for

a two-dimensional system is defined by

v 8 -
h(v,8) = / L /a O, 8)'dv'ad (5.11)

v

where we have used polar coordinates for v, and the dependence on p and T is
implicitly assumed for notational convenience. Clearly, h(v,8) is proportional to the
number of particles whose fluctuating velocity has a magnitude less than v and a
direction between 0 and §. Obtaining this quantity is merely a matter of counting.

The normalization for f(l) 18
oo 2T
/ FOW', 8" dv'de’ = 1 (5.12)
v/'=0J8'=0

and hence h(oo,27) = 1. Two further observations may be made here: the derivative

of h(v,8) with respect to 8,

he(v,8) = [ FO(, 8)v'dv’ (5.13)

v'=0

1s periodic in @ since f(l)(v,ﬁ) is periodic in 6. Also, it is obvious that for small
enough values of v, the function kg is given, to leading order in v, by v? x (function

of 8). We make use of the first observation to write hg as a Fourier series:

hg(v,8) = co(v) + %cn(v)exp(inﬁ). (5.14)

Integration of (5.14) with respect to 8 yields:

]
h(’U, 6) = o—o heldﬁl
= Y lcn(‘v) + co(v)+ > cn(v)gw. (5.15)
ngo T o mn

Thus h(v,8) may be expressed as a sum of terms that are independent of 6, a term

that is linear in § and terms that are periodic in §. Notice that by (5.11), A(v,0) =0
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and by eq. (5.15), h(v,27) — h(v,0) = h(v,27) = 2mco(v). It follows from (5.11) and
(5.15) that the double derivative of h with respect to the angle  and the velocity v

can be expressed as follows:

heo(,6) = vF(0,6) = pu(0) + Youl6,0) (5.16)
where
P(0,0) = 3 enln) TR0 (5.17)
n#0
e(v) = w = co(v) (5.18)

Once h(v,8) is obtained from data (by counting as we said), ¢(v) may then be
computed using (5.18), and (8, v) can be obtained from the identity
¥(8,v) = (v, 6) — % / :2" h(v, 6)d8 + (7 — 6)p(v) (5.19)
which follows from (5.15) by using the fact that the average of the last term on its
r.h.s. over the full range of angles vanishes. It is easy to check that ¢ as given by
(5.19) is periodic in 6 as it should be.
We have found, on the basis of the data we obtained from the simulations, that
the functions ¢(v) and 9(6, v) can be closely fitted by the functions ¢*(v) and ¥*(8,v)

respectively, where

1 —exp(~J(v))

p*(v) = o (5.20)
P00 = 3 Ao)sin 250+ ) (5.21)
with :
Jo) = éamvm (5.22)
40) = ap{l - expl-Qy0)]} (5.23)
Q,(v) = édpmvm (5.24)

where J(v) is of quartic order in v, @,(v) are polynomials of sixth order in v, and a, is

the asymptotic value of A,(v) for large v. The reason only even multiples of § appear
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Figure 5.1: The cumulative distribution function h(v,8) versus v for values of § =
nm/4, n = 1,2,---,8, corresponding to the curves (A) to (H) respectively. Notice
that h(v,6) is smooth and that it increases monotonically with v and §. The data
correspond to System III, and the windows in p and T are (2.8 £ 0.2) x 10°/unit

area and 0.11 + 0.0075 respectively. The average temperature, T, for the system is
0.15.
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Figure 5.2: The periodic part, 1(v, §), of the function h(v, ) shown in Fig. 5.1, versus
6 for the values of v: 0.2, 0.4, 0.6, 0.8, 1.2, 2.0, corresponding to the sets of curves
(A) to (F) respectively. The points correspond to the data and solid curves are given

by (5.21). Notice that 1(v, ) crosses the § axis at the same values of 8 for different

v.

in (5.21) is the ‘rotation by m’ symmetry obeyed by the shear flow. The expansions
in (5.22) and (5.24) start with m = 2 since hg is proportional to v? for small values
of v. The number of terms in the truncated sine series in (5.21) is determined by
requiring the fit to be accurate to within 1% for large values of v and to within 5%
for small values of v. The error tolerance level is relaxed for small values of v because
the numerical data for these values tend to be noiser—a fact which is to be expected
since the cumulative sampling technique used in the algorithm improves the statistics
at moderate values of v but is not as effective for small v. For large v, the accuracy
can be maintained since the numerical data tend to an asymptotic functional form.
The value of the phase 8 is found to depend on p, T, and € . Graphs of h(v,§)
versus v for several values of § are shown in Fig. 5.1. A graph of J(v) and its
fit as given by (5.22) is shown in Fig. 5.3, and a graph of (v, ) along with its fit
given by (5.21) is shown in Fig. 5.2. These graphs are derived from data taken from a

time series of 20 configurations of System III sampled at times separated by intervals
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Figure 5.3: J(v) (points) and its fit (solid line) given by (5.22). The cumulative

distribution, h(v, #), from which this graph is derived is shown in Fig. 5.1.

corresponding to the accumulation of one collision per particle in the system.
Next, a fit to h, is obtained by differentiating the functions in (5.20) and in
(5.21). Since the differentiation is performed on smooth functions, the fit of A, that

is obtained is smooth as well. The result, which is written as

h:e(”a 9) = 90:(1)) + ¢:6(07 ’U), (5‘25)

is referred to below as the ‘once-fitted’ approximation of the distribution function;

that is, we define

f(l)” = hig(v,0)/v (5.26)

where the once-starred quantities refer to results of the fitting procedure. The next
step 1s to fit the function —log(f(l)*) by another analytic function so as to obtain
a form which is similar to those used in the kinetic theory of gases (i.e. one that is
the exponential function of an expression in the velocity). We have found that the

following expression furnishes a close fit to — log(f(l)*):

— log(f™**) = 5(8) + V(@) + b@(8)v? (5.27)
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Figure 5.4: The coefficients b(), i = 0,1,2, denoted by +, o, and X respectively,
versus 6 for given values of T and p (these values are the same as for Fig. 5.1). The

solid curves through the data points are given by (5.29).

where the coefficients b(*), 4 = 0, 1,2, are functions of §. The double-star superscript
in f()** indicates that it is a fit to the function in (5.26) that is superscripted by a
1)*

single star, viz. f()*. Equation (5.27) is called the ‘twice-fitted’ approximation and

we have the final result

fO(v,6;0,T,8) =~ pft
= pexp(—b(8;p, T &) — b0(8;p, T, & Yo — 526, p, T, & w?)
(5.28)

in which we have made explicit the dependence on the macrofields and the param-
eters of the system. For all the parameter values, in particular for all density and
temperature values that we have checked, we find that powers of v higher than the
second are not needed to fit — log( f(l)*) accurately, and that the fit in fact worsens
when a third or fourth power of v is allowed. As f(l) 1s periodic in 8 with period 7, so

are the functions 5, 5(1), and b(?). It follows that these coefficients can be expanded
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Figure 5.5: Nondimensionalized zeroth order amplitudes, b(()o), vV 2Tbgl‘)' , and 2Tb§,2),

corresponding to A, O, and O respectively, versus T for given p (whose value is the

same as for Fig. 5.1).

in a sine series as follows:

. 6 .
b (050, T, 8 ) = b6 (p, T, )+ D b5) (0, T, )sin {2 [0 + €2i(p, T,& )}, i=0,1,2
J=1
(5.29)

In the above expansion, the amplitudes bg?* and phase shifts ¢,; depend on p, T, and
€ . Note that the set of phase shifts €, is the same for all b*)*, i = 0, 1,2, as expected
from the ‘rotation by 7’ symmetry of the flow. A graph of e,; versus T at fixed p is
shown in Fig. 5.6. As indicated in (5.29), the truncation of the series to only six sine
harmonics is sufficient to reproduce the 5(*)’s accurately. The quality of the fit 59* to
the corresponding b(*) which were obtained from the data (cf. (5.27)) is demonstrated
in Fig. 5.4. The zeroth order amplitudes, bg)*, of this fit, i.e. the mean values of b(¥)*,
are shown versus T" at fixed p in Fig. 5.5. The points shown are nondimensionalized
as explained in the figure caption. It is useful to note that the corresponding graph
for an an elastic system in a state of equilibrium would be given by 2Ti)((32) =1 and
V2TH" = 0.

An additional assessment of the quality of the fits given by (5.26) and (5.27) can
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Figure 5.6: Phase shifts €5, 7 = 1,---,6, corresponding to A, O, ¢, A, O, and ©

respectively, versus T for given p (whose value is as for Fig. 5.1).

be obtained by comparing the kinetic stresses calculated by using f(1)* and f(1)*.
Let
() ) = ( Jv3cos? 0f1*(v,0)dvdf [ v3cosfsin 0 f*(v, 6)dvd )

Jvicos 8sin0f (v, 8)dvdd [ v3sin® 6 FfW*(v, 6)dvdé

(5.30)
and let 7(F**(p, T) be defined in a similar way by replacing f1)* by f(1)** in (5.30).
The integrations in (5.30) are over all values of v (where v > 0) and §. The values of

k) (E)** can also be compared to the value of 7(E)(p,T), i.e. the stress tensor

7(5)* and 7
that is obtained directly from numerical data. The latter quantity at fixed values of
p and T can be computed by using

7®)(p, T) = / 7®)(r)dr (5.31)

5(pT)

where 7(¥)(r) is given by (1.4) and the notation S(p, T) has been explained in the text
preceding (5.5)—it means that the integration is to be carried over a set of cells whose
values of the density and temperature lie in a small window around p and T. Fig. 5.7
shows the traces of (%), 7(k)* ‘and 7(¥)** versus T at fixed p. The value of Tr(7(*)*) is

seen to be very close to Tr(7(¥)), the discrepancy between the two values being less
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Figure 5.7: Comparison of Tr(7(*)), Tr(7(¥)*), and Tr(7*)**), corresponding to the
points A, O, and O respectively. The parameters other than T' are as for Fig. 5.1.

than 1%. This should obviously be so since the comparison is made between the data
(as represented by 7(¥) after coarse-graining) and a best possible functional fit (which
is 7(¥)*) that is not subject to any phenomenological constraint. When 7(®** which
is computed from a physically plausible form for f(1) given by (5.28), is compared
to 7(*), the discrepancy is found to be about 5%. This discrepancy appears to be

of systematic nature and is attributed to the fact that for large values of v, f(1)**

underestimates f(1)*.

5.3 Form and Parameter Dependence of the Dis-

tribution Function

The accuracy of the fit for f; obtained in Section 5.1 depends on the amount of
statistics collected: the more particles that are used in the simulation and the more
configurations analyzed, the better the fit. With more statistics, accurate values for
the functions 5(), 4(1) and (), as well as their parametric dependence on 7, p and

é can be determined. The parametric dependence can be determined, for example,
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Figure 5.8: Nondimensionalized zeroth order amplitudes, bg"), vV 2Tb§,1), and 2Tb§,2),
corresponding to A, O, and O respectively, versus p for fixed T' (whose value is as for

for Fig. 5.1).

by expanding bg?* for each 7 and each j in powers of T with coefficients that depend
on p and €, and then determining these coefficients by fitting the data. Since the
variation of 7' in the flow for € not too close to zero is not large, a linear or quadratic
dependence in T' may be sufficient for the fit. We have found that linear fits are
suflicient for the cases of b(()i)* versus 1" and for b(()i)* versus p, as Fig. 5.5 and Fig. 5.8
show. A summary of the various parameter dependences is presented in Appendix B
in which results for € =0.6, 0.7, 0.8, and 0.9 are presented (the parameters other than
€ are as for System III). It seems that the dependence of the amplitudes bf,f} fory >0
(i.e. the amplitudes beyond the zeroth order) on the parameters of the problem is
more complex than anticipated, though we believe that this complexity is still due in
part to noise and insufficient statistics. Since the present work has been performed on
a superworkstation, it is expected that when additional statistics are generated using
a supercomputer, the remaining noise can be significantly reduced. The qualitative
and semi-quantitative dependence (accurate to within 20-30%) of these amplitudes on

the parameters of the problem is not changed when additional statistics is collected.
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Figure 5.9: The dimensionless ratio (b(()l)*)z/b(()z)* versus € . For each €, this ratio is
computed for different values of p (where p = 1.6 x 10°/unit area, 2.0 x 10°/unit
area, 2.4 x 10°/unit area, and 2.8 x 10°/unit area, corresponding to the points A,
O, A, and O respectively) and for the value of T that corresponds to the average
temperature in the system with the given value of € . The external parameters other

than € are the same as those of System III .

Fig. 5.9 plots the dimensionless ratio (bgl)*)z/bgz)' versus € for several values of p
and for a fixed value of T that corresponds to the average temperature in the system
(characterized by the given value of € ). Fig. 5.9 indicates that, relative to the size of
quadratic coeflicient, b(oz)*, the size of the linear coefficient, bgl)*, is largest when € is
small; it decreases as € increases and it tends to zero as € approaches the value 1, as
one expects in the elastic limit. When € is not close to unity and the flow is highly
inhomogeneous, regions with very different characteristic values of the fluctuating
speed (different ‘phases’) coexist in the same statistical steady state (i.e. in ‘dynamic
equilibrium’) and therefore the difference between the values of () corresponding to
these regions can be large. The amplitudes of the higher harmonics in 8¢, 7 =0, 1,2,
also increase as € becomes smaller, indicating that the flow is more anisotropic as

well. These higher harmonics disappear as é tends to 1.
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Figure 5.10: The generalized Gaussian distribution for dilute shear flow, fl(JR), versus
fW* and f(U** The O points correspond to f(1)*) while the dashed line correspond
to f(1** and the solid line to I(JR). All distributions are shown versus v at fixed

@ =mand T =0.11.

The form of f(!) obtained in this work is significantly different from the ones
assumed in existing kinetic theories for granular flow. These distributions are analytic
in the Cartesian components of the velocity and have simple angular dependences.
However, the form of f(1) which we have determined is both non-analytic in these
components and highly anisotropic. Specifically, this form, while not containing, in
the exponent, powers of the fluctuating speed v beyond the second (as in previous
results), does contain a linear power of v. The linear power renders the function
non-analytic in the Cartesian components of v. Morever, the magnitude of the linear
coefficient, (), in highly inelastic systems is of the same order as that of the quadratic
coefficient, b(2), though it is still smaller in size in general. Each of the coefficients 5(*),
» = 0,1,2, contains a finite number of nonnegligible Fourier components implying a
rather complicated angular dependence in f(1).

A comparison of f(1) with the distribution function for homogeneous shear flows

derived by Jenkins and Richman[39] who assumed a generalized Gaussian form is
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givenin Fig. 5.10 and Fig. 5.11. The two-dimensional generalized Gaussian (‘anisotropic

Maxwellian’) form is

(JRy_ P <_l KL ) 5.32
! 21/ detK P 2V M (5:32)

where K is the second moment of the velocity fluctuations given by

oK = / v iR gy, (5.33)
v
In the dilute limit of the generalized Gaussian theory for shear flow, fl(JR) takes the
form: ,
log f® —‘-’T— [+ A+ AVI + A%5in(26 + x)| (5.34)
where x = —tan"'(A4), and A depends, in this limit, on & only. Thus log fl(JR)

contains only a single harmonic in 6 with a phase shift x that depends on & only. The
results presented in this chapter suggest that the actual single-particle distribution
function has a much richer structure.

The high degree of anisotropy in f; and its non-analyticity in the components
of the velocity implies that it cannot be adequately approximated by a generalized
Gaussian or by a standard perturbative expansion in the field variables. The gener-
alized Gaussian form used by Jenkins and Richman provides a representation of f;
which is superior to that of a Gaussian. In fact, it generates a theory that predicts
closely the average value of the temperature in the shear flow (cf. Fig. 3.2). In con-
trast, earlier theories (e.g. Ref. [6]), which do not account for the anisotropy of the
second moment K, predict a zero intercept for the graph in Fig. 3.2, i.e. they give
B =0in (3.1). Although the most general representation of f; in two dimensions is
an arbitrary (and normalizable) function of v and 8 (with a similar function of the
spherical polar coordinates applicable in three dimensions), the number of significant
harmonics in the § dependence is small and therefore a good approximation of f;
may be obtained by perturbatively correcting a generalized Gaussian form with an
expansion in powers of both v and v, where Vv is the unit vector in the direction of
v. This approximation is very general; the coefficient of each corrective power in
the expansion will depend on the moments of v or v and it can be determined by

deriving equations of motion for the corresponding moments. The moments of ¥ will
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Figure 5.11: The generalized Gaussian distribution for dilute shear flow, fl(JR), versus
f@* and f(** The O points correspond to f(* while the dashed line correspond
to f** and the solid line to I(JR). All distributions are shown versus 6 at fixed

v=1.6and T =0.11



5.4 Summary 152

then correspond to additional field variables that account for the angular anisotropy

of the flow.

5.4 Summary

In this paper, we have accurately determined the single-particle distribution function
for a simple granular shear flow and shown that it has a structure that is more
complicated than hitherto assumed. The form of the function is neither a Gaussian
nor a generalized Gaussian and it cannot be represented by a moment expansion in the
usual densities of mass, momentum and granular temperature. A linear term in the
speed and highly anisotropic coefficients are present in the exponent of the function
due to the anisotropy of the flow. The magnitude of the linear term increases with
increasing inelasticity, and hence with flow inhomogeneity, since dense microstructures
are created when the flow is very inelastic. The anisotropic angular structure becomes
more pronounced in this regime as well. The fact that the distribution function
1s non-analytic and highly anisotropic implies that field variables that measure the
anisotropy, in addition to the standard hydrodynamic variables, must be included in

any successful theory describing the dynamics of granular flow.



Appendix A

Numerical Method and

Performance Tests

The numerical method used in this work is based on the ‘event-driven’ algorithm
which is extremely efficient for simulating the dynamics of particle systems with
short-range interaction potentials. The idea behind the algorithm is to decompose
the flow domain into a mesh of computational cells and then compute the flow by
executing a sequence of ‘events’, where an ‘event’ is either a binary collision or the
propagation of a particle from one computational cell to an adjacent cell. The events
for each particle are ‘scheduled’ by searching for possible future collisions and cell-
crossings within a neighborhood of cells around the given particle. By localizing the
search for future collisions, the algorithm reduces the operation count from O(N?) to
O(N log N), where N is the number of particles in the system. A brief description of
this algorithm is provided below; the reader is refered to Ref. [55] for more details. A
three-dimensional version of the code based on the same algorithm was implemented
as well, and some preliminary results of three-dimensional simulations are presented

in Appendix C.

153
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A.1 The Event-Driven Algorithm

In a rigid disk system on which no body forces are exerted, particles move with
constant velocities between instantaneous collisions in trajectories that are piecewise
linear. Since a given particle typically collides only with neighboring particles, the
search for possible collisions with the given particle need only be carried out among
particles lying within its immediate neighborhood. Such a neighborhood can be
defined for each particle in a straightforward way by superposing an rectangular mesh
of cells, whose interstices are smaller than the range of the interparticle interaction,
on the flow domain. For the case of identical rigid disks, the range of interaction is
equal to the diameter of the disk. Note also that the event-driven algorithm deals
only with binary collisions. The neighboring particles among which collisions with
a given particle need be checked are just those that lie within a 3 x 3 array of cells
in which the cell at the center is the one where the given particle resides. Clearly,
a particle may also collide with another particle in a cell that lies beyond the set of
neighhboring cells defined above. In this case, the particle has to cross into another
cell before the collision and therefore such a collision is mediated by a change in the
particle’s ‘cell residence’. With the mesh in place, the change of cell residence of a
particle is continually computed as part of the event-driven algorithm. The dynamical
history of the particle is segmented into ‘events’ corresponding to either collisions with
neighboring particles (binary events) or, in the absence of such collisions, crossings
into neighboring cells (unary events). The dynamical history of the system as a
whole is computed by computing the events, which are either ‘collision’ events or
‘crossing’ events, for each particle in it. The events are ‘scheduled’ for each particle
by computing their trajectories and they are then put into a list in order of the time
of occurrence. The events in the list are then executed sequentially so that the system
advances in time-steps corresponding to the intervals between the times of occurrence
of these events.

The computational effort required to predict future events in the system is reduced,
by using the superposed array of computational cells, from O(N?) to O(N), where

N is the number of particles in the system. There are several ways of organizing the
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list of future events which allow for their rapid addition and deletion and also for
the ‘compaction’ of the event list. A very efficient method is that of the dynamically
allocated linked-list structure supplemented by a two-tier referencing (i.e. a pointer-
to-pointer) strategy to enhance speed of access to actual data. We have implemented
code to provide for the efficient allocation of data structures on an as-needed basis and
for fast streamlined access of linked-list data. We have produced both two- and three-
dimensional codes based on these methods and also extended the basic event-driven
algorithm to simulate flows with several boundary conditions, including rigid-wall
boundary conditions[16].

Dividing the flow domain into computational cells allows many types of boundary
conditions to be applied easily. In the case of the Lees-Edwards boundary condition,
the particles near the top or bottom boundaries will collide with those near the
corresponding boundaries in the images of the system. This type of collisions have to
be computed only for particles lying within a layer of cells adjacent to the boundaries.
In practice, one takes a layer of cells adjacent to the bottom (say) boundary, copies
the data of the particles into temporary storage, applies a Galilean transformation
determined by the velocity parameter to the coordinates and velocities of all particles
in the layer (now stored in the temporary storage), repartitions the layer into cells,
and then attaches the layer next to the top boundary. The scheduling of collisions for
the particles in the cells adjacent to the top boundary then proceeds as the scheduling
that is done for particles elsewhere. Once a collision between a particle in the system
near the boundary (call it particle 1) and another in the system’s image, which is
really the image of a particle (call it particle 2) near the opposite boundary in the
system, has been scheduled and is to be executed, a Galilean transformation is applied
to the coordinate and velocity of particle 2. The post-collisional velocities are then
computed and a transformation that is the inverse of the one applied before is then
applied to particle 2 (whose velocity will have been changed by the collision).

The case of a reflective boundary condition can also be handled easily by the
event-driven algorithm. An example of a reflective boundary condition is one corre-
sponding to a moving rigid wall or one applied at ledges or the surfaces of obstacles

in the flow. We assume that the boundaries at which the condition is applied are
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aligned along the edges of the computational cells into which the flow domain has
been divided. The cells adjacent to the boundary, i.e. the cells one or more of whose
edges are parts of the boundary, are appropriately flagged to reflect their special sta-
tus. The flag will contain information as to which edges of the cell are boundaries
and which edges are common with those of adjacent cells. A particle in a cell adja-
cent to a boundary which is propagated to the boundary is reflected from it in the
way specified by the elementary interaction corresponding to the type of boundary
condition applied. If the particle is propagated to an edge common with that of an
adjacent cell, then it is simply transfered to the adjacent cell. Thus algorithmically
the reflective boundary conditions are applied when the crossing events corresponding
to a ‘boundary crossing’ (as opposed to a ‘cell crossing’) are executed; and herein lies
the simplicity of the event-driven algorithm with respect to the implementation of
complex boundary conditions—these conditions are applied as part of the ‘normal’
routine of scheduling and executing crossing events. Some results of complex flow
simulations are presented in Ref. [16].

In systems on which body forces are exerted, the trajectories of the particles are
no longer piecewise linear. For constant body forces such as gravity, the trajectories
are parabolae, since the distance traveled by a particle depends on the square of the
time taken. Thus multiple solutions are obtained when predicting the future collision
and cell crossing times for a particle and only the smallest positive solution must be
admitted. Apart from the slight complication with the choice of collision or crossing
times, the event-driven algorithm proceeds in the same way as for the case of systems

without body forces. Results of gravity-driven flow simulations are available in Ref.

[16].

A.2 Performance Tests

The main conclusions on performance that can be drawn from our tests of the event-
driven code are (1) the most efficient computational meshes are those containing
on the average between one to two particles per cell; (2) the efficiency improves

for moderately dense systems since a smaller proportion of the computational effort



A.2 Performance Tests 157

: T T T I T T T T I T T T T I l: 1.8x107 _l— T T T " T T T T T 1 T T T
3.9x10% [ (A) - T®) ]
3.8x10° |- 4 1.6x107 |- -
5 ¥ 1% . .
q3.7>(105 — — 3 |

- _C -1

C 2 1.4%x107 —
3.6x105 | - I 1
3.5x10° |- 4 1.2x107 |- -

O oo v v o by g v 1 M R R R T

104 1.5x10¢ 2x104 104 1.5x10¢% 2x104
mesh mesh

Figure A.1: (A) ncon and (B) meyent versus the number of cells in the mesh. The
number of particles in the system is 20000 and € =0.6. The mesh sizes corresponding
to the datapoints are: 6400 (80x80), 10000 (100x100), 14400 (120x120), and 20736
(144x144).
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Figure A.2: (A) neon and (B) 7eyent versus the solid fraction, v, of the system. The
number of particles in the system is 20000 and é =0.6. The mesh size is (144x144)

and is the same for all values of v.

is spent on computing the crossing events; and (3) the efficiency improves as the
inelasticity decreases, since inhomogeneities in the system are reduced. These trends
are depicted in Fig. A.1, Fig. A.2 and Fig. A.3. The most meaningful measure of
the efficiency of the code is the the total number of collisions computed per hour of
computing time; ncy, since the average time interval between successive collisions
of a particle corresponds to a ‘relaxation’ or ‘randomization’ time for the system
and thus the accumulated number of collisions in the system is a measure of how
much it has evolved dynamically. Fig. A.1 shows that the more efficient meshes
are the ones containing on the average between one to two particles per cell. As
the mesh size decreases, the cell size increases and more particles are found in each
cell. This decreases the computational efficiency since the number of neighboring
particles among which collisions with a given particle must be searched is larger and
the operation count for the search scales as the square of the number of neighboring
particles. On the other hand, a reduction in the number of cell crossings, which
increases the computational efficiency, is possible if the cell size is smaller. Thus a

cross-over to lower efficiency occurs when the mesh size is chosen to be too large.
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Figure A.3: (A) neon and (B) neyent versus € . The number of particles in the system
1s 20000 and v = 0.05. The mesh size is 20736 (144x144) and is the same for all

values of € .

Fig. A.2 shows that n., increases with the solid fraction v. This is easy to
understand since the mean free path of the particles decreases with increasing v, and
therefore a particle travels a shorter distance and thus crosses a lesser number of cells
before each collision. When the system is close to random packing density, the particle
may collide many times before it even traverses a single cell. The conclusion to be
drawn here is that the event-driven algorithm is more efficient at higher densities.
However, at very high densities the simulations performed using the event-driven
method may not be physically meaningful since multiple-particle contacts will become
important in this regime.

Fig. A.3 shows that n., increase with € , while neyents first increases and then
decreases with € . This is again easy to understand since particle clustering is more
pronounced—hence density is more inhomogeneous—when the system is more inelas-
- tic, which implies that the distribution of particles in the computational mesh will
become more uneven. There will be accumulation of large numbers of particles in
some cells which leads to a lowering of the overall computational efficiency, since the

operation count for the search for possible collisions scales as the square of number
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of particles in a given cell and its immediate neighbors. Clearly the compensating
depletion of particles from other cells does nothing to improve the efficiency, since

empty cells are merely bypassed in the computation of collisions.



Appendix B

Parametric Dependence of f

The variables and parameters in the ‘twice-fitted’ approximation to f(!) given in these

tables are explained in Section 5.2.
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B Parametric Dependence of f;
: ,, 1G] ] ] ] 0
0.6 | (1.6 £0.2)10° | 0.11 £0.0075 | 0 -0.7174 | 1.1740 | 5.0767
11-0.8460 | 0.0513 | 1.2346 | 1.5310
21 3.0205 | 0.0189 | 0.0948 | 0.3543
3| 0.6037 | 0.0351 | 0.1943 | 0.3243
4| 1.3285 | 0.0618 | 0.3601 | 0.5150
5| 2.0533 | 0.0046 | 0.0520 | 0.1299
6| 2.7782 | 0.0010 | 0.0123 | 0.0297
0.125 £ 0.0075 | 0 -0.5616 | 0.9208 | 4.9318
11-0.8367 | 0.1291 | 1.7669 | 0.9603
2] 3.0389 | 0.0591 | 0.4315 | 0.1538
3| 0.6314 | 0.0023 | 0.0171 | 0.0068
4| 1.3655 | 0.0063 | 0.0807 | 0.2802
5| 2.0996 | 0.0051 | 0.0786 | 0.2344
6| 2.8336 | 0.0013 | 0.0191 | 0.0490
0.14 £ 0.0075 | 0 -0.4608 | 0.8662 | 4.6282
11-0.8226 | 0.1520 | 1.8696 | 0.8173
2] 3.0672 | 0.0962 | 0.5603 | 0.2390
3| 0.6738 | 0.0072 | 0.0265 | 0.2098
4| 1.4221 | 0.0548 | 0.1661 | 0.0510
51 2.1703 | 0.0016 | 0.0256 | 0.0350
6 | 2.9185 | 0.0025 | 0.0184 | 0.0336
0.155 + 0.0075 | 0 -0.2821 | 0.5337 | 4.5315
11-0.8076 | 0.2907 | 2.8314 | 0.5347
2| 3.0960 | 0.1551 | 0.9858 | 0.7691
3| 0.7170 | 0.0413 | 0.1506 | 0.0855
4| 1.4795 | 0.0327 | 0.2533 | 0.4452
5| 2.2421 | 0.0070 | 0.0925 | 0.2246
6 | 3.0047 | 0.0021 | 0.0218 | 0.0482




B Parametric Dependence of f;

p

T

€2j

b

b

b

0.6

(2.0 £0.2)10°

0.11 +0.0075

0.125 £+ 0.0075

0.14 £ 0.0075

0.155 £+ 0.0075

Ay Ot W N RO OOt R WD HE OO Ut R WN O OOt R W N = O,

-0.9056
-0.2403
0.4249
1.0901
-1.3863
2.4206

-0.8994
2.9136
-2.6981
1.1149
-1.3553
2.4577

-0.8789
2.9546
-2.6367
1.1968
-1.2529
2.5806

-0.8534
3.0055
0.5813
1.2987

-1.1256
2.7334

-0.727
0.0369
0.0119
0.0124
0.0378
0.0040
0.0007
-0.586
0.1538
0.0895
0.0239
0.0098
0.0028
0.0010
-0.412
0.2209
0.1098
0.0403
0.0014
0.0041
0.0006
-0.340
0.1829
0.0749
0.0193
0.0790
0.0006
0.0026

1.111
0.9908
0.1311
0.1192
0.2417
0.0477
0.0092

0.983
1.8601
0.5842
0.1198
0.0227
0.0395
0.0129

0.650
2.2043
0.6574
0.2185
0.0018
0.0513
0.0099

0.666
1.9872
0.4413
0.1434
0.4433
0.0201
0.0219

5.226
1.8696
0.1446
0.3186
0.3337
0.1079
0.0221

4.842
0.6301
0.3607
0.0213
0.0669
0.1313
0.0322
4.7189
0.2391
0.4164
0.1454
0.0352
0.1460
0.0276

4.512
0.6765
0.1012
0.3109
0.5591
0.0618
0.0416
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B Parametric Dependence of f;

: : AN
0.6 | (24 + 0.2)105 0.11 £0.0075 | 0 -0.694 | 1.047 | 5.066
110.980 0.089 | 1.573 | 0.682

21 2.753 0.050 | 0.374 | 0.137

3 10.203 0.013 | 0.006 | 0.106

410.794 0.023 | 0.165 | 0.288

51 1.757 0.004 | 0.051 | 0.127

6 |1.976 0.001 | 0.010 { 0.022

0.125 +0.0075 | O -0.5679 | 0.856 | 4.959
110.958 0.158 | 1.757 | 0.741

21 2.797 0.103 | 0.701 | 0.561

3| 0.269 0.064 | 0.224 { 0.114

4 | 0.882 0.074 | 0.256 | 0.052

51 1.646 0.001 | 0.032 | 0.074

6| 2.109 0.002 | 0.010 | 0.014

0.14 = 0.0075 | O -0.4789 | 0.857 | 4.617
110.944 0.091 | 1.298 | 1.499

21 2.830 0.014 | 0.007 | 0.256

310.311 0.024 | 0.217 | 0.527

4 10.938 0.091 | 0.486 | 0.526

51 1.577 0.002 | 0.011 | 0.008

6] 2.192 0.001 | 0.001 | 0.001

0.155 £ 0.0075 | 0 -0.3177 | 0.562 | 4.496
110.921 0.181 | 1.896 | 0.633

21 2.871 0.118 | 0.631 | 0.359

3 10.379 0.029 | 0.162 | 0.096

4 11.029 0.001 | 0.042 | 0.194

51 1.463 0.006 | 0.080 | 0.216

6 | 2.329 0.001 { 0.012 | 0.034
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B Parametric Dependence of f;

€ p T 5| e | W) 85| 8
0.6 | (2.8£0.2)105 | 0.11 4+0.0075 | 0 -0.711 | 1.075 | 5.135
1[2.088 | 0.096 | 1.523 | 0.845

2 | 2.605 | 0.036 | 0.247 | 0.031

3 13.122 | 0.020 | 0.145 | 0.182

410.645 | 0.023 | 0.163 | 0.293

5| 4.157 | 0.003 | 0.036 | 0.091

6 | 1.722 | 0.001 | 0.008 | 0.017
0.125 £ 0.0075 | 0 -0.58 | 0.861 | 4.971
1[2.080 | 0.115 | 1.481 | 1.107

2 | 2.639 | 0.097 | 0.492 | 0.139

3 |3.198 | 0.002 | 0.020 | 0.106

410.715 | 0.038 | 0.234 | 0.316

5|4.316 | 0.002 | 0.033 | 0.079

6 | 1.833 | 0.001 | 0.014 | 0.028

0.14 £ 0.0075 | 0 -0.460 | 0.772 | 4.652
1|2.148 | 0.083 | 1.249 | 1.463

2 | 2.726 | 0.006 | 0.094 | 0.286

313303 | 0.054 | 0.352 | 0.576

410.739 | 0.050 | 0.296 | 0.369

5| 4.459 | 0.002 | 0.028 | 0.059

6 | 1.894 | 0.000 | 0.003 | 0.012
0.155 £ 0.0075 | 0 -0.340 | 0.589 | 4.578
1[2.176 | 0.244 | 2.276 | 0.155

2| 2.780 | 0.143 | 0.875 | 0.737

3 |3.385 | 0.045 | 0.207 | 0.126

410.818 | 0.001 | 0.039 | 0.058

5|4.594 | 0.004 | 0.038 | 0.108

6 | 2.007 | 0.000 | 0.008 | 0.022
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B Parametric Dependence of f,

p

T

€2j

b

b

b

0.7

(1.6 +0.2)10°

0.12 +0.02

0.16 £ 0.02

0.20 = 0.02

0.24 £ 0.02

DD Ot W N O OOt R W N RO OO RWN RO OOt W NN O,

2.3863
0.0601
0.8756
1.6911
2.5065
0.1804

2.4254
0.1383
0.9929
1.8474
2.7020
0.4150

2.4569
0.2014
1.0874
1.9735
2.8596
0.6041

2.4614
0.2104
1.1010
1.9916
2.8822
0.6312

0.1183
0.0463
0.0059
0.0568
0.0310
0.0011
0.0006
0.3530
0.0873
0.1066
0.1324
0.0407
0.0056
0.0018
0.5444
0.1676
0.0053
0.0366
0.0180
0.0011
0.0002
0.7131
0.0276
0.1220
0.1276
0.0761
0.0067
0.0061

0.3927
0.6947
0.0094
0.2471
0.3600
0.0179
0.0026
0.3761
0.7425
0.6482
0.7017
0.2451
0.0398
0.0105
0.4247
1.2429
0.1103
0.2101
0.0556
0.0102
0.0016
0.4233
0.5295
0.6974
0.6550
0.4707
0.0449
0.0368

2.5448
0.4123
0.1344
0.2144
0.5464
0.0203
0.0032
2.1193
0.5703
0.9137
0.8130
0.2325
0.0776
0.0129
1.7447
0.0276
0.2508
0.1761
0.0165
0.0178
0.0031
1.4928
0.8091
1.0116
0.7767
0.6825
0.0705
0.0507
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B Parametric Dependence of f,

é p T 5| e | b 8 8D
0.7 1 (2.0 £0.2)10° | 0.1240.02 | 0 -0.4986 | 0.6074 | 4.6197
1} 2.3338 | 0.1266 | 1.2486 | 0.3775

2| -0.0447 | 0.0030 | 0.0748 | 0.4164

3| 0.7183 | 0.0751 | 0.5568 | 0.8881

4 | 1.4814 | 0.0712 | 0.4385 | 0.6580

5| 2.2444 | 0.0028 | 0.0299 | 0.0637

6 | 3.0074 | 0.0009 | 0.0074 { 0.0137

0.16 +£0.02 | 0 -0.2407 | 0.5693 | 3.6365
1| 2.3745 | 0.0539 | 0.6863 | 1.2909

2| 0.0367 | 0.0488 | 0.3542 | 0.7331

3| 0.8404 | 0.0192 | 0.1444 | 0.3170

4 | 1.6441 | 0.0141 | 0.1247 | 0.1267

5| 2.4479 | 0.0007 | 0.0109 | 0.0468

6 | 0.1100 | 0.0002 | 0.0019 | 0.0050

0.20+0.02 | 0 -0.0479 | 0.6065 | 3.0250
1| 2.4127 | 0.1378 | 1.3896 | 0.2179

2| 0.1130 | 0.0467 | 0.3574 | 0.7612

3| 0.9548 | 0.0161 | 0.1274 | 0.2876

4 | 1.7967 | 0.0006 | 0.0487 | 0.1547

5| 2.6386 | 0.0002 | 0.0060 | 0.0160

6 | 0.3389 | 0.0001 | 0.0009 | 0.0017

0.24+0.02 |0 0.1592 | 0.4788 | 2.6746
1] 2.4256 | 0.0592 | 0.8696 | 1.1121

2| 0.1388 | 0.1041 | 0.9100 | 1.8483

3| 0.9937 | 0.1312 | 0.9483 | 1.5137

4| 1.8485 | 0.0634 | 0.4503 | 0.7845

5| 2.7033 | 0.0042 | 0.0327 | 0.0627

6 | 0.4165 | 0.0051 | 0.0411 | 0.0743
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B Parametric Dependence of f;

é p T 5| ey| W) 8 o
0.7 (2.4 £0.2)10° | 0.12 £0.02 | 0 -0.5185 | 0.6875 | 4.5430
1122666 | 0.1178 | 1.1161 | 0.4865

2 12.9624 | 0.0078 | 0.0038 | 0.2704

3 | 0.5166 | 0.0208 | 0.1708 | 0.3298

411.2124 | 0.0283 | 0.2047 | 0.3934

511.9082 | 0.0006 | 0.0017 | 0.0094

6 | 2.6040 | 0.0001 | 0.0006 | 0.0013

0.16 £0.02 |0 -0.2419 | 0.5428 | 3.6687
1123121 | 0.0644 | 0.7186 | 1.1707

2 13.0535 | 0.0515 | 0.3419 | 0.6933

31 0.6532 | 0.0244 | 0.1284 | 0.2704

4 11.3946 | 0.0146 | 0.1657 | 0.2356

51 2.1359 | 0.0007 | 0.0077 | 0.0379

6 {28773 | 0.0001 | 0.0017 | 0.0045

0.20+0.02 {0 -0.0369 | 0.5615 | 2.9887
1123558 | 0.0558 | 0.8185 | 0.9484

21 3.1407 | 0.0495 | 0.3519 | 0.7809

3 10.7841 | 0.0050 | 0.0497 | 0.1615

4 11.5690 | 0.0168 | 0.2494 | 0.5146

5| 2.3540 | 0.0006 | 0.0110 | 0.0163

6 | 3.1389 | 0.0002 | 0.0018 | 0.0040

0.24 +£0.02 | 0 0.1833 | 0.3679 | 2.7302
1123769 | 0.0500 | 0.7292 | 1.3415

21 0.0414 | 0.0683 | 0.6301 | 1.3627

3 |0.8475 | 0.0838 | 0.5939 | 0.9950

4 11.6536 | 0.0172 | 0.0222 | 0.0471

51 2.4596 | 0.0016 | 0.0116 | 0.0436

6] 0.1241 | 0.0018 | 0.0139 | 0.0237
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B Parametric Dependence of f;

é p T j| ey 62| 8| 8
0.7 (2.8 + 0.2)105 0.12+0.02 10 -0.5437 | 0.8009 | 4.3872
112.2012 | 0.0760 | 0.7509 | 0.9357

2128316 | 0.0483 | 0.2929 | 0.1726

3 10.3205 | 0.0357 | 0.2048 | 0.1765

4 10.9509 | 0.0225 | 0.1723 | 0.2228

51 1.5813 | 0.0011 | 0.0121 | 0.0404

6 | 2.2118 | 0.0005 | 0.0034 | 0.0054

0.16 :0.02 | 0 -0.2445 | 0.5138 | 3.7167
112.2442 | 0.1336 | 1.2379 | 0.3006

2129177 | 0.0314 | 0.1555 | 0.3704

3 10.4495 | 0.0213 | 0.1792 | 0.3408

411.1230 | 0.0053 | 0.0371 | 0.0326

511.7964 | 0.0001 | 0.0004 | 0.0226

6 | 2.4699 | 0.0001 | 0.0002 | 0.0019

0.20£0.02 |0 -0.0175 | 0.4320 | 3.1189
1123101 | 0.0932 | 0.9498 | 0.8019

2 13.0493 | 0.0700 | 0.5396 | 1.0573

310.6470 | 0.0656 | 0.4471 | 0.6909

4 11.3863 | 0.0097 | 0.0077 | 0.0124

512.1255 | 0.0010 | 0.0045 | 0.0116

6 | 2.8648 | 0.0010 | 0.0070 | 0.0108

024 +0.0210 0.2011 | 0.2987 | 2.7155
1123258 | 0.0880 | 1.1312 | 0.4334

2| 3.0808 | 0.0633 | 0.4359 | 0.4180

31 0.6943 | 0.0496 | 0.1510 | 0.0978

4 11.4493 | 0.0437 | 0.0548 | 0.0222

5| 2.2043 | 0.0031 | 0.0356 | 0.0321

6 | 2.9593 | 0.0007 | 0.0072 | 0.0137
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B Parametric Dependence of f;

G p TVj| e | B2 85 e
0.8 | (1.6 £0.2)10° | 0.18 £ 0.03 | 0 -0.0409 | 0.5204 | 2.7159
1125894 | 0.1523 | 1.0072 | 0.0043

2 | 0.4665 | 0.0451 | 0.2470 | 0.2041

3| 1.4851 | 0.0143 | 0.1101 | 0.1282

4 125037 | 0.0551 | 0.2692 | 0.2972

51 0.3808 | 0.0028 | 0.0211 | 0.0350

6 |1.3994 | 0.0010 | 0.0060 | 0.0084

0.24 +£0.03 |0 0.2492 | 0.3627 | 2.2009
112.5970 | 0.0038 | 0.2309 | 0.8932

2 | 0.4817 | 0.0542 | 0.3468 | 0.5777

3| 1.5079 | 0.0785 | 0.4038 | 0.4680

4 125341 | 0.0185 | 0.0003 | 0.0449

5 10.4188 | 0.0012 | 0.0022 | 0.0045

6 | 1.4450 | 0.0016 | 0.0095 | 0.0130

0.30£0.03 | 0 0.4535 | 0.3663 | 1.7964
1]2.6026 | 0.0637 | 0.5321 | 0.5662

2 10.4928 | 0.0312 | 0.1958 | 0.3391

3| 1.5246 | 0.0493 | 0.1538 | 0.1421

4 1 2.5564 | 0.0608 | 0.3156 | 0.3881

5| 0.4466 | 0.0003 | 0.0040 | 0.0074

6| 1.4784 | 0.0012 | 0.0064 | 0.0083

0.36 £0.03 |0 0.6380 | 0.3124 | 1.5614
1125998 | 0.0601 | 0.0174 | 1.2012

2 10.4872 | 0.0502 | 0.3287 | 0.5233

3] 1.5162 | 0.0129 | 0.0873 | 0.2056

4 | 2.5453 | 0.0750 | 0.5953 | 0.8010

510.4327 | 0.0025 | 0.0210 | 0.0134

6 | 1.4617 | 0.0009 | 0.0065 | 0.0108
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B Parametric Dependence of f;

z p T j| ey| b5 b5 b
0.8 (2.0+ 0.2)105 0.18+0.03 |0 -0.0156 | 0.3993 | 2.8037
112.5219 { 0.0614 | 0.4890 | 0.5529

21 0.3313 | 0.0042 | 0.0349 | 0.1222

3| 1.2824 | 0.0027 | 0.0139 | 0.0477

4122334 | 0.0277 | 0.1302 | 0.1408

5 10.0429 | 0.0005 | 0.0051 | 0.0094

6 { 0.9940 | 0.0000 | 0.0002 | 0.0004
0.24+003]|0 0.2448 | 0.3428 | 2.2272
1|2.5438 | 0.0655 | 0.6386 | 0.2557

2103753 | 0.0232 | 0.1435 | 0.2732

3 11.3483 | 0.0248 | 0.1322 | 0.1608

4123213 | 0.0249 | 0.0939 | 0.0994

51 0.15628 | 0.0003 | 0.0046 | 0.0063

6| 1.1258 | 0.0003 | 0.0019 | 0.0026
0.30+£0.03|0 0.4814 | 0.2534 | 1.8668
125621 | 0.1007 | 0.7335 | 0.2609

2104118 | 0.0201 | 0.1602 | 0.2818

3(1.4031 | 0.0309 | 0.0713 | 0.0273

4 123945 | 0.0035 | 0.0480 | 0.0512

51 0.2442 | 0.0002 | 0.0018 | 0.0084

6 | 1.2355 | 0.0002 | 0.0009 | 0.0006

0.36 :0.03 |0 0.6463 | 0.2750 | 1.5823
1(2.5601 | 0.0689 | 0.7019 | 0.2682

2 10.4078 | 0.0459 | 0.2126 | 0.2902

311.3971 | 0.0318 | 0.1382 | 0.1924

4123864 | 0.0574 | 0.1849 | 0.1817

5129075 | -0.0008 | 0.0126 | 0.0144

6 [1.2233 | 0.0013 | 0.0069 | 0.0085
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B Parametric Dependence of fy

p

T

€25

b

b

b

0.8

(2.4 £0.2)10°

0.18 0.03

0.24 +0.03

0.30 + 0.03

0.36 + 0.03

S Ot W N H O OO AW O OOt R W N RO OO W N R O .

24717
0.2271
1.1392
0.7504
0.1766
1.5960

2.4896
0.2668
1.1857
2.1045
3.0233
0.8005

2.5215
0.3306
1.2813
2.2320
0.0412
0.9919

2.5280
0.3436
1.3008
2.2580
0.0737
1.0309

0.0083
0.0741
0.0119
0.0095
0.0128
0.0002
0.0000
0.2497
0.1330
0.0175
0.0544
0.0417
0.0020
0.0002
0.4981
0.0954
0.0164
0.0582
0.0201
0.0008
0.0005
0.6391
0.0815
0.0917
0.0709
0.0396
0.0009
0.0025

0.3162
0.6255
0.0980
0.0227
0.1106
0.0038
0.0002
0.3145
0.9912
0.0705
0.2697
0.2177
0.0138
0.0015
0.1660
0.7220
0.1523
0.3167
0.1191
0.0070
0.0031
0.2693
0.5727
0.4555
0.3516
0.1113
0.0004
0.0141

2.8359
0.2072
0.1999
0.0460
0.1876
0.0078
0.0004
2.2593
0.1916
0.0161
0.2884
0.2731
0.0211
0.0022
1.9272
0.1634
0.3036
0.3910
0.1097
0.0183
0.0041
1.5945
0.4669
0.5709
0.4263
0.0822
0.0004
0.0184
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B Parametric Dependence of fi

p

T

52]'

b

b(l)

25

b

0.8

(2.8 +0.2)10°

0.18 £0.03

0.24 £0.03

0.30 +0.03

0.36 £ 0.03

D Ot B W N O ORI W N RO O RWN RO OO W N R O,

2.4509
0.1726
1.0800
1.5774
2.2915
0.2935

2.4278
0.1410
1.0077
1.8104
2.6340
0.3817

2.4635
0.2146
1.1073
2.0000
2.8927
0.6439

2.4787
0.2451
1.1530
2.0610
2.9689
0.7352

0.0115
0.1149
0.0212
0.0371
0.0983
0.0015
0.0008
0.2610
0.0908
0.0331
0.0132
0.1262
0.0013
0.0014
0.4882
0.0163
0.0670
0.0713
0.0172
0.0021
0.0013
0.6512
0.0969
0.2221
0.0151
0.1069
0.0046
0.0095

0.2647
0.7983
0.1552
0.1283
0.7491
0.0037
0.0043
0.2543
0.7331
0.1628
0.0430
0.8661
0.0033
0.0084
0.1556
0.2257
0.2984
0.3961
0.1093
0.0157
0.0081
0.1735
0.6417
1.1143
0.1916
0.4262
0.0382
0.0547

2.9136
0.0055
0.1653
0.1339
1.0921
0.0071
0.0055
2.3017
0.0750
0.0928
0.0249
1.2006
0.0096
0.0119
1.9542
0.7326
0.4502
0.4968
0.2111
0.0308
0.0116
1.7031
0.3247
1.1810
0.2381
0.4212
0.0611
0.0738
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B Parametric Dependence of f;

p

T

E2j

b

B

53

0.9

(1.6 +0.2)10°

0.4£0.05

0.5£0.05

0.6 £0.05

0.7+ 0.05

Y Ot W N RO OO RWN RO OOl WD O OOt R W NN RO,

2.7845
0.8504
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Appendix C

Three-Dimensional Simulations

and Simulations with Spin

Here we present some results of three-dimensional simulations of free and simply
sheared systems as well as results of two-dimensional simulations of shear flows with

spin degrees of freedom. More detailed results of these simulations can be found in

[16].
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Figure C.1: Density isosurfaces of a

three-dimensional dilute free flow in a periodic
cubic enclosure after the transition to an inhomogeneous state. The parameters of
the system are: N = 120000,» = 0.05,é = 0.6. The isosurfaces are colored according
to the value of the streamwise velocity as indicated in the legend. Notice the dense
meandering fingers of particles reminiscent of the dense wandering clusters observed in
two-dimensional systems. The phenomenology of two-dimensional free flows appears

to carry over to their three-dimensional counterparts.
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Figure C.2: Density isosurfaces of a three-dimensional dilute shear flow driven by
the Lees-Edwards boundary conditions. The parameters of the system are: N =
120000, = 0.05,¢ = 0.6,U = #100,L, = L, = L, = 1. The isosurfaces are
colored according to the value of the streamwise velocity as indicated in the legend.
The shearing is applied to the top and bottom boundaries with the top boundary
moving to the right and the bottom boundary to the left. Notice the formation of
dense clusters aligned at 45° to the streamwise direction, much like the clusters in a

two-dimensional sheared system.



C Three-Dimensional Simulations and Simulations with Spin 181

Figure C.3: Density isosurfaces of a three-dimensional dilute shear flow driven by
the Lees-Edwards boundary conditions. The parameters of the system are: N =
120000, = 0.05,é =0.6,L, = L, = L, = 1. The isosurfaces are colored according
to the value of the streamwise velocity as indicated in the legend. The shearing is
applied incrementally so that the velocity of the top and bottom boundaries increase
(exponentially) from 0 to 50 over many collision times. The top boundary moves to the
right and the bottom boundary to the left. Notice the formation of a dense streamwise
plug in the center of the system. This is the very first numerical observation ever in

three-dimensional sheared systems of plug formation.
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max spin=131.8

min spin=—250.8

Figure C.4: Particle configuration plot for a simple shear flow with rotational degrees
of freedom. The color of a particle depends on its angular velocity as indicated by
the legend. The parameters of the system are: N = 20000, » = 0.05, € = 0.6 and
B = —0.8 (B is the coefficient of tangential restitution; the collision model may be
found in Ref. [8]). Notice the heterogeneous distribution of spins within the system.
The origin of this heterogeneity lies in the fact that spinning particles close together
will tend to align their spins in opposite directions so as to minimize the dissipation
of rotational kinetic energy. Spin degrees of freedom may also play a role in reducing

the density inhomogeneities in the system.
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max lvl =45

min vl = 0.01

Figure C.5: Particle configuration plots for a wall-bounded shear flow driven by two
flat frictional walls at the top and bottom moving in opposite directions with equal
speed. The color of a particle depends on the magnitude of its velocity as indicated
by the legend. The parameters of the system are: N = 20000, » = 0.05, & = 0.9
and 8 = —0.8. The collisions of particles with the moving walls are characterized
by normal and tangential restitution coefficients equal to 0.8 and -0.8 respectively.
Notice the formation of a dense streamwise plug of low internal kinetic energy similar

to the plug in a simple shear flow driven from a static initial condition.
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