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Like every intellectual pursuit, physics has both a written
and an oral tradition. Intuitive modes of thought, inference
by analogy, and other strategems that are used in the effort to
confront the unknown are transmitted from one generation of
practitioners to the next by word of mouth. After the work of
creation is over, the results are recorded for posterity in a log-
ically impeccable form, but in a language that is often opaque.
The beginner is expected to absorb this written tradition, and
only the survivors of this trial-by-ordeal are admitted to cir-
cles where the oral tradition is current. We could only hope to
strive toward our goal by leaning heavily on the oral tradition...
we believe that this tradition plays an essential role not only
in the creation of physics, but also in the search for a deeper
understanding...

Gottfried and Weisskopf
Concepts of Particle Physies, Vol. 1



Preface

More than just to learn to do a field theory caleulation, the aim of the
thesis has been to expose myself to contemporary issues in particle and
nuclear physics. To this end I have studied a series of articles on solar
neutrinos, neutrino mass and oscillation, neutrino detection experiments,
cte, and presented the knowledge in the first and second chapters—much
in a fashion that reflects my intuitive understanding of the material. Per-
haps herein lies the strength of the presentation, for the use of rough and
ready analogies, the press for the idea and the motivation rather than the
particulars will surely appeal to non-specialists in the field. Still a journal
it is not and a standard of scientific rigor will be apparent in the writing
(and indeed will be presumed in the reader).

The stage is then set for the third chapter which records the effort to
calculate the cross-section for the neutrino-deuterium reaction

7.+d—>n+n+et

relevant to many neutrino detection experiments. In a rather picturesque
model of the interaction, the deuteron is regarded as in some sense a system
of two ‘orbiting’ particles, viz. a neutron and a proton, and the antineutrino
hits the latter and changes it to a ncutron. The calculation is carried
through without accounting for the Pauli exclusion of the two final-state
neutrons, although an outline of a proper treatment is also provided. The
qualified agreement between our results and those published as well as the
merits and shortcomings of the method used are also discussed.

I deeply appreciate the guidance of Prof. K.Jagannathan, who had very
much sought to raise me into the oral tradition of theoretical physics.

M.L.Tan ’90
April 1990



Chapter 1
MASSIVE NEUTRINOS

Is the neutrino massless? No established principle affirms this and no cred-
ited experiment denied it. Direct measurements have shown that the neu-
trino is far lighter than all the particles we have discovered. It is entirely
possible from these measurements that the neutrino is massless. Indeed
there are theories that require massless neutrinos—but many do not. The
theoretical aesthetic in general is to regard a massless neutrino as quite
accidental; and a deeper reason is to be found if its mass were indeed zero.
Thus the neutrino mass issue is an important and unsettled one. In this
chapter we will begin to address it by studying some phenomenological as-
pects of massive neutrino physics and recent experiments to detect neutrino
mass.

1.1 Introduction

Discovery

The neutrino was postulated by Pauli in 1930 to account for the apparent
nonconservation of energy in nuclear beta decay. Such decay occurs when
a neutron, in a heavy nucleus such as radium, breaks into a proton, an
electron and an anti-electron neutrino:

n—p+e +7..

If the neutrino were absent, the energy spectrum of the emitted electron
(i.e. number versus energy) should be discrete. For the electron energy



Figure 1.1: A discrete spectrum at E,uq» for 2-body decay but a continuous
one for 3-body decay ending also at E,..,. The graph is drawn for the same
nuclear initial and final states (reproduced from Ohanian, Modern Physics).

is simply the difference between the energies of the parent and daughter
nuclei, and energy levels in nuclei were known to be discrete from nuclear
scattering experiments (1920s). But the observed spectrum (1927) drops
continuously from a maximum equal to the value expected without the
neutrino to zero (Figure 1.1). This effect could be explained if a third
particle is emitted which shares the energy given to the electron. This
particle, the 7, , was first detected directly in a reactor experiment (1953).
Its mass can be inferred from the energy spectrum; and until recently an
upper limit was placed at 46eV[1], or about 107* times the electron mass.

Flavors and Masses

There are at least three ‘flavors’ (species) of neutrinos, corresponding to
the three types of leptons with which they interact. They are labelled v,
Vu, V-, and their anti-particles 7., 7,, 7,. The v, is emitted in nuclear
beta-decay; the v, in the decay of muons and pions. The v, has never
been detected directly but is believed to be emitted in the decay of the
tauon. The present limits on the v, and v, masses are m,,, < 250keV and



m,,. < 35MeV|[2].

Within the standard electroweak theory all neutrinos are assumed to
be massless particles with no magnetic moments. It appears that the only
parameter to be determined is the total number of neutrino species, which
may in fact be three as a recent measurement[22] indicates. But some ex-
tensions of this theory to accomplish grand unification with the strong and
gravitational interactions require non-zero neutrino masses. Theoretically
the prejudice is against a zero mass since there is no compelling justifica-
tion for it'. Indeed recent experiments (section 1.2) suggest that the v, is
possibly massive.

The massive neutrino is associated with a quantum mechanical process
known as neutrino oscillation (section 1.4), which is the transformation
of neutrinos of one flavor into another, and which will not occur if they
are massless. This transformation may explain a 20-year old discrepancy
between the number of neutrinos from the Sun detected on Earth and the
number expected from theoretical solar models. Non-zero neutrino masses
also have implications for cosmology and theories of the evolution of the
universe. With the recent advent of high-resolution spectrometers having
a mass sensitivity of 10eV or better, the massive neutrino has become an
issue of much theoretical and experimental interest.

1.2 Mass Measurements

Previous Experiments

The high-energy end of the spectrum for nuclear 3-decay is sensitive to
neutrino mass. The paradigm has been to determine m,, from the spectrum
of #-decay in tritium

“H PHe4 &= 4 v
The trend had been for decreasing upper limits to m,, as measurements
became more accurate. The expectation was that m,, may-indeed be zero.

Then a recent experiment by V.A.Lubimov et al[4] (Moscow 1980) gave a
positive lower limit

17eV < m,, < 40eV (90% confidence level)

IThe photon is the only particle acknowledged to be massless, with good reason.
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and a best fit value? of ~30eV. However, conflicting claims were subse-
quently made by M.Fritschi et al[5] (Zurich 1986), H.Kawakami ct al(6]
(Tokyo 1987), and D.L.Wark et al[7] (Los Alamos 1987):

m < 18V (90%) Zurich
m < 17¢V (90%) Tokyo
m < 27eV (95%) Los Alamos.

Experimental Method

In these experiments, electrons emitted from a tritium source (solid or
gaseous) are guided into a spectrometer which analyzes the distribution
of energies by magnetic focussing techniques. To observe a mass effect,
the spectrum must be measured accurately up to a few neutrino masses
before the end-point Ep which occurs at about 18.6keV. It is difficult to
measure the end-point directly, since the count rate there is comparable to
the background. What is done is to fit the measured spectrum (including
the fuzzy data at the end-point—see Figure 1.2) to a known function, and
then statistically infer a value for Ey. The function is essentially

E,
NE) = G+4 /ﬂ * S(E',my, Eo)R(E', E)
(14 as(Bs = E'Y+ as(Bs— B ++ |dE".

N(E) is the number of electrons detected with energy E. S(E',m,, Eo)
is the expected spectrum (i.e. number emitted with energy E') calculated
based on the density of final states for *He. Energy loss as the electron
traverses the source and backscattering processes, in which the electron is
deflected by more than 90° from its original direction and is not detected
because the spectrometer only collects electrons from a limited solid angle,
will affect the spectrum; they are also incorporated into S(E’,m,, Eo). A
normalizes the sum to the total number of electrons. G is the noise level
due to cosmic rays and radioactive contamination of the spectrometer. The
series parametrized by «; , is an ‘efficiency correction’ that accounts for the
electron detecting mechanism being made to be most efficient at the end-
point Ep. It corrects ‘undercounting’ at energies away from Ep, where the

290% confidence level means P(17¢V < m < 40eV) = 0.90



Figure 1.2: The data close to the end-point of the *H spectrum reproduced
from the Tokyo experiment.

efficiency (i.e. ratio of number detected and emitted at each energy) is
lower.

R(E',E) is the spectrometer response function, i.e. the probability
of detecting an electron with energy E when it really has energy E'. It
is determined by putting in place of the tritium a field-emission electron
gun or some other type of source whose emission is controllable or well-
known. R(E, E'), which is regarded as the fraction of detected E electrons
that are really E' electrons, drops quickly to zero as |E — E’| becomes
large. It is usually approximated by a gaussian centered at E and ~10eV
wide. This means that each point E in the output (measured) spectrum
has contributions from a range of points E’ in the input spectrum. The
spectrometer ‘blurs’ the output by spreading out each input point (this
also happens in a telescope for instance). Mathematically this blurring
is expressed as the convolution of S(E',m,,Ey) with R(E', E), i.e. the
integration over E'.

The parameters G, Eg, m,, A, oy are varied until a best fit to the data
is obtained. y*? minimization or more sophisticated methods were used, and



Monte-Carlo simulations of the experiment were also performed to verify
the fairness of the fit.

Errors

Uncertainties in the measurement are mainly (a) statistical, i.e. those
arising from the fitting procedure; and (b) resolutional, i.e. those aris-
ing from the finite width of the spectrometer response function. Also
S(E',m,, Ey) may be a source of systematic error if the final states of
3He are not calculated accurately. In fact both the Moscow and Tokyo
experiments used tritium in a complex compound form—respectively va-
line ((CH3),CH.CH(NH,).COOH) and arachidic acid (C2H4O2)—and the
Zurich experiment used tritium implanted in carbon. The final-state effects
are complex and the energy lost by the electron to molecular excitations
are comparable to the size of the neutrino mass. Backscattering effects
and energy losses as the electron traverses the source are also complicated.
The Los Alamos experiment had sought to eliminate the above problems
by using free molecular tritium (gaseous source), since its final states are
accurately known and the energy losses are small.

Future Experiments

In view of the above problems, the conflicting mass limits may well be due
to systematic errors. A definitive measurement awaits the next generation
of experiments[8,9,10]. While still involving the S-spectrum of tritium, they
will offer the following improvements:

1. Higher instrument resolution (< 15eV) with electrostatic spectrome-
ters

2. Better statistics by increasing the count rate in the mass sensitive
region and reducing backscattering and energy-loss effects using im-
proved tritium sources (thinner, more active)

3. Lower noise-to-signal ratio by carefully differentiating -decay elec-
trons from background electrons.

10



1.3 Neutrinos from SN1987a

Bursts of neutrinos (v.) from Supernova 1987a in the Large Magellanic
Cloud were observed on Feb 23 1987 by the Kamiokande-I1I{12] and IMB[11]
water-Cerenkov detectors. The Kamiokande-II recorded 12 neutrino events
in an interval of 12.4 sec, with an average neutrino energy of 9 £ 1 Mev. The
IMB recorded 8 events in 5.6 sec, with an average energy of 14 & 2 Mev([14].
(The two detectors sample different energy ranges). Some implications of
these historic observations are:

Stellar Evolution

The observations are supportive of the current theories of stellar evolution
and neutron star formation. The standard stellar model predicts that as
fusion reactions in the stellar core led to the formation and nuclear burning
of successively heavier elements, a massive star becomes unstable and col-
lapses under its own gravity. The collapse and the ensuing violent outburst,
when the outer layers are being ejected while the core is left as a neutron
star, is accompanied by two energetic neutrino bursts. The first occurs
during the collapse and lasts no more than half a second; the second occurs
during the outburst and lasts several seconds. The contiguity in time of the
neutrino observations and the first optical sighting® gives compelling evi-
dence that neutrinos are indeed released during the supernova stage. Also
the average energy of the 1,.’s radiated is expected from the standard model
to be 10-20MeV[14], which agrees with the observed values.

Neutrino Decay

A life-time for v, greater than 10* years can be inferred, ruling out neutrino
decay as an explanation of the observed solar neutrino deficiency (see sec-
tion 1.6). The total number of neutrinos produced by SN1987a is estimated
to be ~10°8[14], of which ~10% is directed at the Earth 150,000 light-years
away. Even assuming that the two detectors are 100% efficient, no less than
~ 10'® neutrinos must have passed through the Earth. A mean-life 7 can

3The neutrinos were in fact observed about 18 hours before the first optical sighting.
This is not surprising since light emission increases gradually over many hours, while
neutrinos are all emitted within a few seconds.
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be inferred from
10 ~ 10*° exp[—(150000yr/~v)/7]

giving 7 > 10"/v yrs, where v = 1/4/1 — v%/c? = ratio of neutrino energy
to neutrino mass. Note that 4 is there because of time dilation and 7 is
measured in the neutrino’s frame. In the earth’s frame the mean-life 1s
simply 10* yrs.

Neutrino Mass Limit

An upper limit m,, < 6eV can be derived from the arrival times and en-
ergies of the neutrinos. The calculation due to A.Burrows[14] is essentially
the following: If neutrinos are massive, then different energies would corre-
spond to different speeds. A delta function pulse of neutrinos with different
energies will disperse temporally as they travel away from the source. From
the relationship

m 2

=
where the symbols have their usual meanings (u is velocity, ¢ = 1, m = m,,,
etc), we obtain

u?=1

(1.1)

2

m
Au = @AE.

And using t = D/u, where D is the distance between SN1987a and the
earth, we get

Au
2

- B 6

where At is the lapse in arrival times between two neutrinos of energy E
and (E—AE). It can also be regarded as the deviation as a function of AE
from the average arrival time corresponding to the average energy E. The
calculation is more complicated if the neutrinos do not leave at the same
time. A distribution of departure times would map into a distribution of
arrival times. Equation 1.2 still holds qualitatively, though we might think
of different departure times as effectively different D’s.

Af =

12



Kamiokande-II recorded 5 neutrinos in the first ~ 0.5 seconds. One
can ask: Given a value for m, an energy distribution that (purportedly)
characterizes the source, and a time interval 7, in which 5 neutrinos were
randomly emitted from the source, what is the probability that these 5
neutrinos will arrive at the detector within a time interval 74 < 0.5 seconds?
Equation (1.2) shows that for a given 7,—1.e. for emissions times that are
restricted to within a given 7,—the bigger m is the more likely it is to cause
a wider spread in arrival times. That is, for large m, and barring unduely
small AE, each neutrino will have a At that is large; and so even if 7, were
small, 7, is still likely to be large. Also it is unlikely that neutrinos emitted
over a long interval (7, > 74) will converge into 0.5 seconds on arrival.
Thus the probability P(7, < 0.5s) as a function of m and 7 decreases
for increasing m and 7,. This is indicated in Figure 1.3 reproduced from
Burrows[14], who obtained it using a series of Monte-Carlo calculations.
From the figure it is clear that a mass m > T7eV end an emission interval
7. > 1 sec effectively rule out the observation of 5 events in 0.5 sec.

The Kamiokande-II detector gave not only the arrival times but also
the energies of the neutrinos. A specific arrival time and energy together
with a given mass imply a specific emission time (cf. equation (1.1), which
gives the velocity and hence the time of travel). Thus the emission interval
7, corresponding to the first 5 events can be derived as a function of m. So
P(74 £ 0.5) instead of being a function of both m and 7 is in fact a function
of m only. Below is a table of P(r; < 0.5) and m values reproduced from
Burrows, which shows that for m > 6eV, P(7; < 0.5) < 0.01. That is, it
is nearly impossible for 5 neutrinos of mass m > 6eV to arrive within 0.5
sec. Hence an upper limit of 6eV (99% confidence level) can be placed on
m. Note however that the above analysis does not prescribe a non-zero m.
In fact for maximum probability, it may as well vanish. The value of GeV
is just what it is—an upper limit.

13



Figure 1.3: Probability that 5 neutrinos will arrive within 0.5 seconds vs 7
and m.

P(rs £0.5) | m(eV)
~1.0
0.99
0.76
0.19
0.05
0.01
0.002
<.001

=1 S Ut = W b=

oo

1.4 Neutrino Oscillations

Propagation Eigenstates

The v,, v,, v- couple to respectively the e, u, T particles via the weak inter-
action and are hence classified as leptons, or weak-interaction eigenstates.
A neutrino is in general a superposition of ve, v, and v,. It is identified by
the way it interacts in a weak process, just as a superposition of the eigen-
states of an observable collapses into a single one during measurement. For

14



example, a capture process ¥ +d — e~ + 2n in which an electron 1s cre-
ated fixes v as v.: and one in which a muon is created fixes v as v, and
so forth. Thus 1., v, v, are the right basis for describing weak-nteraction
processes. But the neutrino is generally not expected to propagate in 1ts
weak-interaction eigenstates. The proper basis for describing propagation
is a set of mass eigenstates vy, v;, va.

Vacuum Oscillations

The mass eigenstates are related to the weak-interaction eigenstates by a
unitary (change-of-basis) transformation. If we consider only two-neutrino
mixing, the transformation is

v, cos sinf 0 "
vy | = | —sind cos g 0 ve | . (1.3)
7. 0 0 1 /3

We have assumed for simplicity that the v, is a pure v3 state, while v,
and v, are each mixtures (linear combinations) of 1 and 1. Although
the most general 2 x 2 unitary matrix has four independent parameters,
three of which appear as phase factors, the matrix parametrized by the
real mixing angle # will suffice to exhibit the important physical features of
neutrino oscillation. The degree of mixing is characterized by #, which is at
present an unknown parameter; § = 0 implies no mixing (the eigenstates
coincide) and 8 = 7/4 implies maximum mixing (equal portions of 1; and
v,). Writing (1.3) as separate equations gives

lv.) = cosflin) + sinb|vz) (1.4)
lv,) = —sinb|m) + cos 6|v2) (1.5)

and multiplying (1.3) by the inverse of the mixing matrix gives

|1) = cosB|v.) —sinb|v,) (1.6)
lva) = sinflv.) + cosblv,). (1.7)

The mass eigenstates are also eigenstates of energy and momentum. Their
time development is given by

lr1a(t)) = exp(—iHt)|v1,2) = |v1.2) exp(—iEipt). (1.8)

15



Now suppose the eigenstate |v,) is created imitially

vt = 0)) = ve)

where (t) denotes a general neutrino state. To describe its propagation,
we write it as a superposition of mass eigenstates (equation (1.4)) having
equal momenta whose time development is given by (1.8)

lu(t)) = cos B|1n) exp(—iExt) + sin b|vz) exp(—i Est) (1.9)

After travelling for a time t, the neutrino is detected via a weak-interaction
process such as ¥ +d — L + 2n, where L = e, y, or 7 serves to identify
v. To see how the neutrino will interact, we use (1.6) and (1.7) to rewrite
(1.9) as a superposition of weak-interaction eigenstates
lu(#)) = [exp(—i Eyt) cos® 8 + exp(—i Eat) sin® 0] |1
+[— exp(—iE;t) cos 0 sin 0 + exp(—iEst) sin 6 cos 8] |v,,)

which gives the probabilities

:
v = 1-— 3 sin’ 20[1 — cos(Ey — E; )t]

= 1—sin?26sin? lL;E‘_)f] (1.10)
[ v(@))|? = sin®26sin’ [(—E-:—E‘)f} (1.11)

Clearly if  # 0, the neutrino that set out as pure v, will later become a
mixture of v, and v,. It will have some probability of interacting like v,
and a reduced probability of interacting like v,. Because the probabilities
are oscillatory functions of time, the v, is said to have ‘oscillated’ into v,.
This is the process of neutrino oscillation—in vacuum since we have not
examined the dependence of § on the medium.

For relativistic vy, 5, the probabilities can be simplified by using the
approximation E = /p? +m? ~ p + m?/2p (since E;,p; > m;) and the
assumption that p; = p, to write

eiz)
2p

Am? i
= SR I+ o(m?®).

12

(E, — E,)t
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Hence, the probabilities, written in terms of an oscillation length I, =

4n E/Am?, are
) ; [ .
(elv(®)? = 1—sin®26sin® (rI—) (1.12)

(wulv()? = sin®28sin® (rli) : (1.13)

Note that the period of sin? is 7. Energy conservation is not violated as v,
tranforms into v, (where m,, # m,,) because they are not eigenstates of
energy. The calculation could also have begun with a pure », and similar
results would follow.

The physical picture is this: Suppose a beam of neutrinos begins at a
source as pure 7.’s. Along the way some 1..’s transform into v, and vice
versa. The probability P(» — 1,) is the fraction of the beam that remains
as v, and P(v — v,)) the fraction that transformed into v,. Since these
fractions are oscillatory functions of time, the composition along the beam
varies sinusoidally as shown in Figure 1.4. The »; and v, states in the
superposition that was v, have equal momenta; but because the masses are
not equal, each eigenstate picks up a different phase factor as it travels.
Had we assumed that the energies are equal then the travelling eigenstates
will pick up different phase factors from different p’s in exp(—ipx). Thus
oscillation results from the interference between these eigenstates of unequal
masses; it will not occur if the masses are degenerate or if there is no mixing
between the two eigenstates (6 = 0).

Here we have considered only two-neutrino mixing. The three-neutrino
case has three more parameters, but the qualitative features are similar.
Oscillations in matter are much more complicated and will be treated in
Chapter 2.

A familiar analog in which the propagation eigenstates are different from
the detection eigenstates is optical rotation[15]. Light is described as a su-
perposition of two orthogonal plane polarized states when its direction of
polarization is measured with a sheet of polaroid. Malus’ Law for example,
which describes the detection of plane polarized light, is derived by decom-
posing the incident beam into components parallel and perpendicular to
the transmission axis of the polaroid. But when light propagates, it is de-
scribed as a superposition of orthogonal right- and left-circularly polarized

17



Figure 1.4: The composition along the beam varies sinusoidally with dis-
tance [ from the source.

states. In an optically active medium (different refractive indices for left-
and right-circular light), the two states pick up different phases as they
travel. And the direction of polarization is found to have rotated when one
reverts to the basis of plane polarized states.

Detecting Neutrino Oscillations

The clearest proof of oscillation is observing a sinusoidal time (or length)
variation in the composition of a current of neutrinos. But whether this is
possible depends crucially on the oscillation length I,. One can work only
with conveniently available lengths [ such as the length of one’s laboratory
or the distance from the Sun (a powerful neutrino source) to the Earth.
Suppose [ is the distance from a neutrino source to a detector, whose size
is small compared to I. If in (1.12) and (1.13) I, > [, then oscillations
have not vet started at the detector. If I, < I, then oscillations may be
too rapid to be observed. For if the size of the detector is large compared
to I, the neutrinos would have oscillated many times while going through
the detector. There is only an average effect (sin®(wl/l,)) ~ 1/2, and the
fraction of each species measured will be constant. Only when [, ~ [ can
any depletion or enrichment of a neutrino flavor be readily observed.
Experiments to detect neutrino oscillation include measurements of the
neutrino flux produced by specific reactor reactions and detecting day-night

18



or seasonal variations in the solar neutrino flux. (One such experiment will
be discribed in Chapter 2). No conclusive evidence for oscillation has yet
been found, although certain combination of Am? and 6 values has been
ruled out by these experiments[16].

1.5 The Solar Neutrino Problem

In the Standard Solar Model (SSM) 1.’s are produced abundantly in a
series of fusion reactions in the solar core. The principal reactions, neu-
trino energies and neutrino fluxes through the Earth are given in Figure
1.5 reproduced from reference [15]. The total flux is enormous and is pre-
dominated (> 90%) by neutrinos produced in the basic pp reaction. Their
low energies make them very difficult to detect. Until recently there has
only been one experiment to observe solar neutrinos, which began in 1970
in a detector down in the Homestake Gold Mine[17]. A tank of 4 x 10°
liters of CyCly shielded by 1.5km of earth captures neutrinos through the
process

gy 5 Ol Ar-e .

This reaction has a threshold energy of 0.81 MeV and is optimally sensitive
to the high-energy neutrinos produced in the ®B reaction, which contributes
~80% of the capture rate[21]. The pp neutrinos are not observed, while
the rest contribute ~20%. The capture rate is determined by counting the
number of *”Ar produced. The average rate (Ar atoms/day) measured in
the period 1970-86 is only 27% of the value predicted by the standard solar
model:

2.14£0.3 SNU (Homestake 1970-86)

capture rate = { 5.3 —-10.5 SNU (SSM)

Here SNU = Solar Neutrino Unit = 1073¢ interactions/target atom/s; 5.3~
10.5 SNU is also expressed as 7.9 +2.6(3¢) SNU[18]. The range quoted for
the SSM values accounts for all possible initial conditions in the evolution
of the Sun that could have led to its present luminosity and other proper-
ties. Although the Homestake value has fluctuated occasionally (eg. highs
4.240.8[19] SNU (1986-88) and ~ 5.1 SNU (1977-78)), it has remained con-
sistently below the theoretical value for 18 years. This deficiency is known
as the Solar Neutrino Problem.

19



"Figure 1.5: Standard model solar neutrino fluxes; continuum sources in

units cm2sec~!Mev~!, line sources in em™2sec™ .



The flux was also measured recently by the Kamiokande-IT reactor[20],
which detects neutrinos through neutrino-electron scattering v.e”™ — v.e™.
This process has a threshold of ~9MeV and is therefore sensitive only to
tlie 5B flux. The result is about 46% of value predicted by the SSM; it
consistent with the Homestake value after correcting for the unobserved
lower energy fluxes.

Possible Solutions

There are two candidates:

1. The standard solar model, or at least the portion that implied the
neutrino spectrum to which the Homestake detector is sensitive, 1s
wrong. But because the SSM must simultaneously account for many
observed properties, it is difficult to adjust it to obtain a lower B
flux without adding a lot of new physics.

N

The neutrinos transform—decay, precess, oscillate—along the way
to Earth. Neutrino decay over 1 A.U. has been ruled out by the
survival of the neutrinos from SN1987a (see section 1.3). Neutrino
spin precession occurs when a left-handed necutrino precesses into a
right-handed neutrino in the presence of an external magnetic field.
Only left-handed neutrinos are involved in weak interactions; they
are the ones produced in, and detected by, nuclear reactions. Right-
handed neutrinos, if they exist, do not interact. If some of the left-
handed »,’s produced in the solar core change their handedness as
they travel through the solar magnetic field, they will not be observed
by the Homestake detector. But for this to happen the neutrino must
have a large magnetic moment, which secms unreasonable on account
of present theories[15]. There are also other complications, and the
sentiment is that spin precession is unlikely to occur. So we are left
with neutrino oscillation as a plausible resolution of the problem.

Vacuum oscillations may be the answer, but only if the mixing angle ¢
is large. A reduction to about half the v, flux to explain the deficiency re-
quires 6 > 7/8 (cf. (1.12) and (1.13) where sin?28 ~ 1/2 implies 6 ~ 7/8).
But such large values for 6 seem unreasonable within theories requiring
a non-zero neutrino mass. Fortunately when oscillations occur in mat-
ter, a mechanism exists that efficiently converts neutrinos of one flavor to
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another when certain conditions are met. This is the Mikheyev-Smirnov-
Wolfenstein (MSW) effect to be discussed in Chapter 2. For the solar neu-
trinos the conversion may occur while they travel from the core where they
are produced to the surface. And it may occur even for neutrino masses of
less than 10~2eV and for 6 < 1072[23]. So matter oscillations together with
the MSW effect offer a likely solution to the solar neutrino problem.



Chapter 2

MATTER OSCILLATIONS

2.1 Matter Oscillations

Propagation in Vacuum

If its spin structure is neglected, the neutrino propagates, or develops in
time (since length = time for a particle that travels at close to ¢), according
to the Klein-Gordon equation

2

(Vi=mH)) = % v). (2.1)

This equation, which is the relativistic analog of the Schrodinger’s equation,
is obtained from the relation E? = p* 4+ m? with the substitutions £ —
i9/0t and p — —iV. The mass eigenstates satisfy (2.1) since they are also
eigenstates of energy and momentum. It is in this sense that the neutrino
propagates in vacuum in its mass eigenstates. For n neutrino flavors, we
can write the propagation equations in the mass basis [»;) as a single matrix
equation ,

: ; 0 :
(6 V* = milws(#)) = Z51m(t) (2.2)

where i,j = 1...n and m}; is a n x n diagonal matrix consisting of the
mass eigenvalues squared. Assuming relativistic neutrinos from a coherent
source—i.e. equal p;'s, (2.2) can be reduced to a first-order equation with
the substitution

lvi(t)) = exp(—iEit)|vi) ~ exp(—ipt)|vs).



So we obtain! 5
(P} +mi)lvi(t)) = zpa lvi(1)). (2.3)

where p? is diagonal and cousists of squared momentum eigenvalues. Note
that V? ]rz,(t ) = exp(—ipt)V?|;) = —p*|vi(t)). The combination (p}; +
m?;) is known as the propagation matrix. Since p?; is proportional to the
identity matrix, it contributes the same phase fa(.tOl to all the propagation
eigenstates when (2.3) is integrated to solve for them. If only neutrino
oscillation, which comes from interference between different propagation

eigenstates, is to be considered, we may neglect the p? term and write

m (1) = iparlii(h). (2.4)

A propagation equation in the flavor basis can be obtained from (2.4)
by means of a similarity transformation

(UMPUNU ) = ?'.p%th)

—_
!.\:J
(=]

p—

where U is the unitary matrix in (1.3), M?* = m}; and |v) is understood to
be a column matrix of wave-functions. The combma.tmn W=U M’ Utis
the propagation matrix for the weak-interaction eigenstates |va) = Uaj|v;)-
(Latin and Greek subscripts respectively label mass and weak-interaction
eigenstates). Considering only two flavors, (2.5) appears explicitly as

.0 (v [ micos?8+misin®0 —(mj—m})sinécosd Ve
Pai ( ) — \ —=(m?—-m?)sinfcosf mjsin®f + mjcos®d -
(2.6)
This propagation matrix is diagonal only when the masses are degenerate
or when the vacuum mixing angle 8 is zero. In the last case it reduces to
M?: and each decoupled weak-interaction eigenstate separately satisfies its
own Klein-Gordon equation and is therefore a propagation eigenstate.

UThe first-order equation has only one solution, whereas the second-order equation (2.1)
has two corresponding to waves travelling in opposite directions. We are disregarding the
reflected solution—see [23].



Propagation in Matter

We have hitherto considered only vacuum propagation. Neutrinos travelling
in matter scatter from electrons or nuclei. The elastic scattering v.e™ —
v.e~ via the charged current interaction generates a refractive index n (i.e.
the interaction accelerates the neutrino) given by[15]

An=n—1=—V2Gpp/E (2:7)

where G is the weak-coupling constant, p the number density of electrons
in the medium and E the energy of the neutrino. If An # 0, there is a path
difference relative to a neutrino travelling in free space of AnL, where L is
the distance travelled, which leads to an extra propagation phase factor?
exp(:EAnL). Neutrino scattering via the neutral current interaction gives
refractive indices that are the same for all neutrino species. It merely gives
to all states a common phase that may be ignored.

The mixing amplitudes in (2.6), i.e. the elements in the propagation
matrix, determine the relative phases of the interfering eigenstates. Since
only the phase of the v, state is modified in matter, the matter propagation
equation in the weak interaction basis has the form

L0 (v _ o — ¢ 0 Ve
D ( i ) = [(UM Ut) + ( b .

where ¢ depends on E and p. Actually the Klein-Gordon equation 1s not
applicable here since the neutrino spin figures in matter. It can be shown([15]
that the correct propagation equation derived from the Dirac equation is

9 )2 ve \ _ [ m?cos®8+misin?8 4+ 2v2GrEp —(m} — mj})sinfcosé Ve
“Pot\ v, ) = —(m3 — m?)sinf cos b m? sin?  + m3 cos® § Yy

(2.8)

This equation resembles the Klein-Gordon equation except for a factor of
2

To solve (2.8) we first obtain the eigenvalues M7, of the propagation
matrix by solving the determinant equation

m? cos® § + m2sin® 6 + 2v/2GrEp — M}, —(m% —m})sinf cos 0
—(m32 — m?)sin @ cos 6 m?sin? 6 +micos’d — ME, |

2The phase difference is ¢ = 27(L/Amedium — L/Aprec), where Apedium = Ajree/n. So
¢ = ksro.AnL = EAnL, since L =t and E = w.
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Writing dm? = m2 — m3i, the answer is

i ;
ﬂfflz‘g = -‘;{2\/§G;:Ep -+ mf + n?.g
:}:[(2\/'56';7}3;: — 6m?® cos 20)? + (6m* sin 29_)2]%}, (2.9)

M3, are also the elements of the diagonalized propagation matrix obtained
from (2.8) via a similarity transformation. That is, if W} is the nondiagonal
propagation matrix in (2.8) and we use the transformation

e ( cos#,, —sinb,, )
=

sinf,, cos#f,

where

S M?2 0
T meETr. = 1 )
Z:".-u‘[‘lltm - ( 0 P‘{{?z )1

then by multiplying both sides of (2.8) by U} and inserting U, U}, = I we
obtain

. 6 1 Ve rt s rr 1 Ve :
2?'1'-’&{}'::: ( v ) = I'jmHllI”fﬂ’?lr"rrn > (210)

[ Yy

( i ) = U} ( ne ) (2.11)
Vom Vy )

where |V1m.2m) are matter eigenstates, we obtain the diagonal form

.0 [ M2 0 v
9 S m = 1 Im 2. 2
2iogy (1 )= (0 i) (o) i

From (2.10) a relation between.the matter mixing angle #,, and the
vacuum angle # can be obtained:

Now recognizing that

tan 26
1= QﬁGpEp/:sz cos 26

tan 20,, = (2.13)

These angles are conventionally taken to be positive.
From (2.13) we note the following
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1. No vacuum mixing (# = 0) implies no matter mixing.

o

If GrEp < §m?cos? @, the medium has negligible effect and oscilla-
tions are as those in vacuum.

3. If GrEp > ém?cos?d, then 6,, ~ 0 and there will be little or no
oscillation.

4. If GrEp = ém?cos® 6, then 6, = w/4 and there will be maximum
mixing (ie. equal portions of 1, and v;). This is called resonance,
and the value of p at which this happens is the resonant density.
Oscillations may or may not be pronounced depending on &§m?.

Varying Density

The propagation equation in a medium of varying density remains as (2.8)
except that @ and p are now functions of position. Using (2.8) and (2.11)
we write it as

.0 [ v M2 0 v
‘)'. p— ¢ et I 1 T‘r 2
“Poi ( Vi ) O ( 0 M ) Un ( v, )

y J'VI]? 0 1
=" ] m 2.
Un ( 0 M2 ) ( v ) (2-14)

We might as well equate 8/9t with @/9! since the neutrino travels at close
to the speed of light. So

U*z‘g v, =_1_ M: 0 Uim
ol \ v, 2p 0 M3 Vam

(2.15)
and because Ul is now [-dependent we have
E 2 rt Ve (9 t Ve
&l ()] -Gee) ()
. i ﬂ{{f 0 Yim
2 0 M? Vam
(2.16)



Note that the matter eigenstates are local, i.e. position dependent. We

have
O B 1 ﬂ-’.{f 0 0 't Yim
B = — 1—(U I
‘ol ( Vom ) 2p [( 0 M; ) TigpUnlUn| { 4,

(2.17)
It is easily shown that
9 0 —i%a
s (TN = al
“'a!v(r'm)bm ( .,3_;}]1‘ 0
with 90 s? 4
m o S3G?sin2 m*® dp
o i2V2G pp? sin 6—_(61".4'2)2 a
The propagation equation now has the form
A 1 M} —§%m V1
i m = > a" T ) 2-1
28!’ ( Yam ) 2?) ( za_g?u' -'r\"-fg? Vom ( 8)

This equation can integrated numerically along the neutrino trajectory
for any given electron density profile p(I). The off-diagonal element in
the propagation matrix in (2.18) can be regarded as a perturbation that
mixes the matter eigenstates. It can be shown that if p(l) varies so slowly
(0p/0l < 1) that 86,,/0l < |6M?|, i.c. the characteristic length (‘rise
time’) of the perturbation is small compared to 1/w where w are frequen-
cies associated with energies in the system, then the adiabatic theorem[24]
applies and the ordering of the local eigenstates is preserved throughout
the perturbation. A neutrino that starts out before the perturbation in
a local upper (lower) matter eigenstate remains in a local upper (lower)
state after the perturbation. The local states are of course different since
the perturbation changes the eigenvalues as the neutrino travels. Thus if
mo, My, where mo < My, are the two mass eigenvalues before the perturba-
tion, and the neutrino is in the state |vag,) (the higher mass state), then it
will emerge from the perturbation in the state |vys) where M is the larger
of the two new eigenvalues M and m. Similarly a [1/,,) will emerge as a [vn).
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MSW Effect

Mikheyev, Smirnov and Wolfenstein[25] discovered that a neutrino propa-
gating adiabatically through a medium of varying density could transform
from a |17) to a |v,.) if certain conditions are met. The mechanism is the
following: Suppose a |v) is produced in the solar core, where the electron
density is so high that

dm? cos 26

iy e,
P> S AGrE

Then (2.13) shows that tan 26,, is small and negative, i.e. 8, ~ 7/2. Except
for a phase factor, the |v.) is now almost a pure local |vy,,) since the mixing

(2.19)

equation is

ve \ [ cos@y, —sinby, vim \ (0 —1 V1m
v, )\ sinf, cosf, vam |/ A\ 1 O Vam |

Suppose p decreases slowly enough to preserve the adiabatic condition.
(The drop in density with distance from the core is well described by an
exponential). Then the neutrino always stays in the lower local eigenstate
|/am) as it travels from the solar core into interplanetary space. Since in
vacuum the mixing angle # is expected to be small, the mixing equation

gives
Ve e 1 0 Yim
y;: a 0 1 Vom

Now the lower matter eigenstate |i5,) corresponds to almost a pure |v,).
Hence the v, had been converted into a v,.

A level crossing diagram will nicely illustrate the conversion process.
But we will not belabor the treatment since such diagrams are presented in
practically every paper on the subject. Many detailed calculations have also
been performed to determine the parameters §m? and 6 required for a MSW
effect significant enough to suppress 2/3 of the v, flux from the Sun. In
the above parametrization for example, a §m? of ~ 10™* eV? would satisfy
(2.19), given a core density of ~10*'m™. A more refined analysis must
sustain the requirements of the adiabatic approximation—which imposes
a range of values for 6—and agree with the Homestake flux measurement;
but a range of values of 10™*eV? or smaller for §m? would still emerge
nonetheless[15].



Chapter 3

7ed — nnet™ CROSS-SECTION

3.1 Deuterium Reactions

Neutrino reactions in deuterium, including the neutral current (Z° ex-
change) reaction v +*H — p + n + v and the charged current (W ex-
change) reactions 7 +2H — n+n +e¢* and 7 +*H — p+p+e”, are
particularly useful to study because (1) the deuteron is the simplest of
many-nucleon nuclei; and (2) many experiments to detect neutrino oscil-
lation involve these deuterium processes. Experimental results[28] (1981)
for the cross-sections (o(7, H — nne™)) and (#(7. *H — npv.)) at low neu-
trino energies were found to be in agreement with theoretical calculations
based on the Weinberg-Salaam model. These positive measurements have
motivated several experiments using these reactions to measure neutrino
fluxes.

Neutrino Flux Measurements

One such experiment[28] (1980) which engendered the claim that evidence
for neutrino oscillations has been found is the following: A tank of D,O
captures 7,’s from a fission reactor situated 11.2m away via both the charge
current (CC) process

V.+d—et +n+n

and the neutral current (NC) process

vV.+d—7.+p+n
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The CC and NC cross-sections were measured and a comparison made
with theoretical values calculated assuming a zero-mass neutrino (i.e. no
oscillations possible). The motivation behind is that given the low energy
neutrinos from the reactor, a 7, or 7, in their midst that has come about
because of oscillations would not have enough energy to cause the CC
reactions

7,+d—=pu"+n+n

7,4d—=71"+n+n

since the energy supplied by the nentrino is below the threshold needed to
create the p* and 7+, As a result the measured CC cross-section in the
presence of oscillations will be smaller than the theoretical value. However,
the ¥, or 7, could still cause the NC reactions

V,+d—=V,+p+n
v,+d—v,+p+n

since no new particles are created. And the NC cross-sections for all three
flavors are equal which means that the measured NC cross-section will
remain the same as the theoretical value even in the presence of oscillations.
Therefore if neutrinos oscillate, we would have

_0(CC)ex _ a(CC)n
R= o NO). = a(NC)u

Indeed the experimenters found that

a(CC )

R~ (04402)———"—
( ) (NC)u

and since ¢(NC)er = 0(NC)u, this implies that o(CC)ex < a(CC ).
So a significant new effect attributable to neutrino oscillation seems to
be present. Unfortunately this result has been overrun by criticisms of
both the experimental procedure and the theoretical groundwork. (For
example o(CC);, may not have been calculated properly). But the idea
of comparing CC and NC reaction rates is useful and has been applied in
another experiment that we will now describe.
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This experiment, proposed to resolve the solar neutrino problem, uses
1 kiloton of D>O down in a mine in Sudbury, Ontario, to capture neutrinos
produced in the ®B reaction in the Sun through both the flavor-specific
reaction

ve+’H—op+pte (3.1)

and the flavor-indifferent reaction (where @ = €, p,0r 7)
ve+’H — vp +p+n. (3.2)

As noted the last reaction has the same cross-section for all three types of
neutrinos. Hence by comparing the v, flux measured with (3.1) and the
total flux measured with (3.2) one could confirm v, flux depletion inde-
pendent of the standard solar model. A depletion would be indicative of
neutrino transformation of some sort.

In this chapter we will study the reaction 7. — nne™ and calculate the
reaction rate for the process in which a single neutrino engages the deuteron.
This is equal to the cross-section (the experimentally relevant quantity) for
unit incident flux. This reaction is easier to study than (3.1) because there
is no electromagnetic interaction between the two final state neutrons. The
cross-sections for both reactions are exactly the same to order G%[26], where
Gr is the weak-coupling constant. (That is, the cross-sections will be equal
in the 1st-order perturbation theory approximation that we will be using
to calculate them). The cross-section has been calculated by Weneser([27]
(1957—hefore the discovery of the antineutrino) and improved upon by
Mintz[26] in a series of articles (1974-1981). The most detailed calculation
to date was done by Ying[29] et al (1989).

3.2 v.d — nne't Cross Section

Previous Work

If J.. is the incident flux (particles/area/time) and d N the number of prod-
uct particles to be found in a solid angle d§2 per unit time, the differential
cross-section o 1s defined as

I = :
ot Jx'nc

(3.3)



In the reaction 7.d — nnet in which a single incident neutrino disintegrates
the deuteron, Ji,. is just ¢/V, where V is volume of the ‘box’ in which our
wavefunctions are normalized, and dN is the transition probability rate
hetween incident and product states. The Golden Rule from 1st-order
time-dependent perturbation theory gives

. 2 o
N = ?|(<1),|H,-,,fi¢,-)| 8(E; — E;). (3.4)

where |®;) = [7.d) and (®;| = (nne*| and Hi, is the weak-interaction
hamiltonian.

A cross-section calculation thus rests upon the evaluation of the matrix
element (®¢|H;|®;). For our problem the older approach by Weneser(27]
is to evaluate an integral of the form

[ W50, G5 x2, Go) Hn Wi, Grs e, o) (3.5)

where U; is the deuteron ground state wavefunction and ¥y the wavefunc-
tion for the two final-state neutrons. The nucleon space and spin coordi-
nates r;.(; are simultaneously for the proton and the neutron before the
interaction and the two neutrons after the interaction. This amounts to
assuming the neutrino interacts only with the proton in the deuterium nu-
cleus and changes it into a neutron. The integral involving the neutrino
and positron wavefunctions decouples from the one involving nuclear wave-
functions in the matrix element and is easy to calculate as we will see later.

To evaluate (3.5) we first note that the neutron and proton are so loosely
bound that there is only one deuteron bound state. This ground state is
composed mainly of *S with the nucleons having parallel spins. (In the
notation 25*15, 3S corresponds to two nucleons with parallel spins (s =
1/241/2) and 'S corresponds to opposite spins). Thus the final state will
also be 1S and S mostly. The spins of the final-state neutrons cannot be
parallel because of the Pauli exclusion principle; so the final state is only 18,
The spin-flip is effected by the weak-interaction; and in an approximation
good to within 10% of the final result the H;, operator is taken to have
the sole effect of flipping the spin of one of the nucleons. Thus the matrix
element is simply between a two-neutron 'S state and the S deuteron
ground state (with H;,, = 1). The wavefunctions in a judicious choice of
coordinates are functions only of the nucleons’ relative separation and spins.
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The angular integrations are straightforward and it remains to evaluate
o B
[ és)ggar

where r is the relative separation |r; —r3| and ¢5 and ¢, are the two-neutron
and the deuteron wavefunctions respectively.

Although the above method neatly takes care of the exclusion require-
ment of the neutrons, it involves the use of nuclear wavefunctions ¢s, ¢,
which are not generally well-known. And the cross-section sometimes de-
pend sensitively on these wavefunctions. The other approach, which does
not involve nuclear wavefunctions, is to treat the deuteron as a single el-
ementary particle that is free up to the point the neutrino (also a free
particle) impinges on it. This is the elementary-particle model where all
interacting particles are regarded as plane-wave states. The range of the
weak interaction is short enough for this model to be valid in this problem.
This approach is taken in the calculation by Mintz[26], an outline of which
follows.

In the modern theory of weak-interactions the transition matrix element
is written as

M(7.d = nnet) = (\;/‘; cos O (nn|J1|d) (et [by (1 — 5)¥|7e) (3.6)
where Gp (=~ 107°/m3?) is the weak-coupling constant and ¢ (cos Oc =
0.98) is the Cabibbo angle. The interaction may be thought of as between
a weak hadron current J ; (of the deuteron and neutrons) and a weak lepton
current j* = 131 — v5)¢ (of the antineutrino and positron) mediated by
a W vector boson. Replacing the fermion states with Dirac spinors @, v
and boson states with polarization vectors e, and collecting all constants
and spinor normalization factors into 7, we have

M(.d — nne®) = ni, TsJ vy, 7 (1 — v5)Test -

Here a and 3 labels the two neutrons. To account for their Pauli exclusion,
the hadron current must have the form

(nn|J{|d) = Ta TCY(p1, P2, d)ases

where the 4x4 matrix C¥{(py, p2, d)ap is a function of the neutrons’ 4-momenta
p1,p2 and the deuteron 4-momentum d and is exchange antisymmetric:

C::(pl?p21 d)arﬁ — _C::(pE) pla d)ﬁo-

34



This ensures that the squared matrix element remains the same under the
exchange p; < py,a « 3. (Note that a and 3 are contracted spinor
indices).

It remains to determine the form of the Lorentz 4-vector C}(p1, p2, d)apév
which must be expressible as a function of the 4-momenta of the interacting
particles and bilinear covariants constructed from v matrices. Generally

Cl(p1,p2,d)agér = > filipi

where p; are the 4-momenta of the interacting particles, I'; are bilinear
covariants and f; are scalar functions of scalars in the problem, i.e. the
dot products p,-pu, Pn-Pe, etc. Mintz has researched painstakingly into
the correct form for C}/(p1,pa,d) and has caleulated the cross-sections for
many neutrino reactions in deuterium. We will not reproduce his work;
instead we will calculate the cross-section using a spectator-neutron model
for the interaction. In this model we assume that only the bound proton
in the deuteron participates in the reaction; the bound neutron is merely a
spectator. This method still requires the use of nuclear wavefunctions—but
only in obtaining the momentum distribution of the bound proton. The
calculation presented in detail in the next section is in effect for a process
in which a neutrino engages a proton whose momentum is distributed as in
the ground state of the deuteron.

First Approximation

Because of Pauli exclusion, the joint wavefunction of the two neutrons n
the final state must be antisymmetrized. But the number of permitted
final states into which the neutrons can enter is large enough for failing to
antisymmetrize the final-state wavefunction to represent only a small error
to the calculated cross-section. So we dispense with antisymmetrization in
our first simple-minded model. We also assume that the incoming neutrino
interacts only with the proton which is in a bound state of the deuteron.
The momentum distribution of the proton is simply the squared modulus
of its wavefunction in the momentum representation |¢(p)|*. It is given by
the Fourier tranform

8@ = G [ 1 YEHP ~a, ~ ) (37)
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where ¥(r) is the deuteron wavefunction in the coordinate representation
and q is the difference of the neutron and proton momenta qn — dp. The
neutron plays no part in the interaction and still retains its momentum
distribution from the bound state after the interaction.

Deuterium Ground State

To derive (3.7) we begin with the hamiltonian for the deuteron system

2 2
q q
H:—n — +1/’ r, —r
2m,, * 2m, ( »)

and use the transformation

Mpry + MpYp

R =
my + My
P = pa+pp
r = r,—Ty
g = MpQn — Madp (3.8')
my +my
to obtain , ;
- R (3.9)

T 2(mg +my)  2p

The motion of the center of mass is unimportant and we need concern only
with the relative hamiltonian

%
Hiag = ﬂ + V(!‘)
whose solution ¢(r) is related to the solution of (3.9) by

1
(27)3/2

¥(rn, rp) = e P Ray(r) (3.10)

To obtain the momentum distribution of the bound proton and neutron,
we need to evaluate the Fourier transform
il
(2m)

¢(an, gp) = /dsrndarp W1, rp)e i An Tre i r Te, (3.11)
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Tt is easily shown that under the transformation (r,,r,) — (r,R)

+ . . Ama{p—mpUn)
e~ ilnTn o=iQp Ty e—:[qﬂ+qp}<lte—'__IL‘%‘(U,.“‘;,HP =t

e Hdntap) R —iqr

and

&Pr,d*r, = |J|d°Rd’r
= d°Rd’r

since |J| = [(mn + mp)/(m, + m,)]? = 1. Then (3.11) can be written as

. 1 TR N
#9n.8) = Gy [ PRy ¢(P~n=as) Ry (1)eid (3.12)

where q ~ (q, — q,)/2. The R integration gives a delta function
[ R P-am=9IR = (20 °6(P ~ q, ~ )

whence we obtain (3.7).

From experimental data the ground state of the deuteron is found to
be composed of 96% S and 4% 3D,. The potential that binds the two
nucleons is therefore not spherically symmetric; but for simplicity we will
neglect the *D; admixture and assume a spherically symmetric potential
V(r). The exact shape of V(r) is unknown but it may be approximated by
a square well of depth V5 > AE where AE is the binding energy of the
deuteron[33]. (The square well is of course a crude approximation to the
potential of the strong force between two nucleons, but it will suffice for
our purposes).

Since | = 0 for a S-state wavefunction, the radial equation in spherical
coordinates for the ground state of the deuteron is

10 ]|,0
LA % ) = —AER(r
5 Or lr 81‘R(r_]] + VR(r) AER(r)
where V = —Vy for r < a and V = 0 for » > a. Using the standard

substitution u(r) = rR(r), we obtain

1 _
—Q—“u”(r‘) + (AE — Vo)u(r) = 0.
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Figure 3.1: The square well approximation to V(r); a is the effective radius
of the deuteron and AFE its binding energy.

Writing K, = /2u(Vo — AE) and K; = /2 AE, the solutions for the two
regions are

-l u(r) = BsinI<ir
P eal u(r) = De 52",

The requirement that R(0) be finite and R(co) be zero precludes a cosine
solution for r < a and a positive exponential for r > a.
Matching the wavefunctions and their first derivatives at » = a yields

BsinKja = De ke
BLK,cos Kja = —Dfi'ge_"‘?“;

and dividing the two equations
IS cot Kya = —K,. (3.13)

The effective radius a of the deuteron can be estimated using the measured
binding energy AE = 2.22 Mev and the depth V5 = 33 MeV (known
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from scattering experiments[33]). Solving (3.13) for a gives a =~ 2.13
fm. The constants B and D are given by the normalization condition
[u(r) u(r)drdQ = 1; and the normalized wavefunction is

2‘2 ‘.' A% s
i) = { 1sin Iy (r < a)

3.49exp(—Ir) (r > a). (3.14)

The momentum wavefunction conjugate to u(r)/r is given by the fol-
lowing Fourier transform (c¢f. (3.7))

1 :
W) = oy [ ISP -, - q). (G19)

i
Since u(r) is spherically symmetric, the z-axis may be chosen for each q to
lie along q. Then the integral can be evaluated:

é((qrn q;)) = /(ll‘ ?‘2 sin Bdfdd “f: )(-:_“7’ L‘:"‘0‘5'*'(]_3 -q, — qp)

(f)- 3{2
= \/;E/o Id-?‘ u(r) sin(gr)8*(P — q,, — qp)

1 [1.76 fﬁ dr sin(K;r)sin(qr)
q 0

Il

+ zm/ dr 5" sin(qr)dr| (P - q, — qy)

The delta function ensures momentum conservation; and if we take the
deuteron to be at rest so that P = 0, then the integral is non-zero only
when q, = —q,. Noting from (3.8) that q = q, = —q, and completing the
integration, we have

(gns o) = 0(gp)

= ¢(—¢n)
_ 1 5 7ge~Kaa I, sm(qc—t) + qcos(qa)
q K3 +¢?
176 K; cos(I{,a)sin(ga) — gsin(I;a) cos(qa) . (3.16)

K2 — ¢?
A small discovery indeed that the conjugate wavefunction is expressible in

closed form! The reader may verify that (3.16) is correctly normalized. The

square modulus of this function peaks at ¢ = 0 and drops quickly to zero
(see Fig. 3.2).
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Figure 3.2: |6(q)|* vs ¢
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Inverse Beta Decay
In the first approximation we grant that the cross-section for the reaction
r_/,_.+d—)n—l—n+e+
is the same as that for the inverse beta decay
Ve +P 9N+ et

where the proton has a momentum spectrum given by (3.16). We first
consider the process in which the proton is initially at rest (i.e. has fixed
momentum). The transition matrix element from lst-order time-dependent
perturbation theory is

+oo0 e
M= —i / (ne™ | Hint [i?ep)c'(bf_ﬂ')tdt
J=o0

When written in terms of a hamiltonian density H;y, that is time-independent,
it becomes

+o0 . -
M=—i f d*z (net [Hine|7.p) f " Br=Eit gy (3.17)

o0

In the Cabbibo theory H;,: is written as a product of two fermion current
densities J| and j*; M then has the decoupled form
M= -ECOS 9(3 jd"x (n|J1|p)(e+|j’\[Tf'c)
\/'j A
where [ d*z = [ d*xdt. The current densities have the V-A' form[30] given
by

o= p(a—AW
P = e -
where
; o 2y _ oxvg” 2y, N 2
W(g) = mh(g®)—1 . falg®) + szs(q )
o

AT . ; 2 /\uqu 2 __q__A_ 2
Axg) = ['ngl(q) i —92(a") + 5954 )] Vs

'Vector current minus axial vector current. Note that 1by,vs1 is an axial 4-vector
whereas 71 is a polar vector, which changes sign under space inversion.
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Here the current densities are given as their Fourier conjugates and 2m =
m,,+m,. It can be shown that the form factors fi(¢*), ¢i(¢?) are dependent
only on ¢2. Since only low-energy neutrinos will be dealt with in this
calculation, the fact that the nuclear recoil p, — p, = Py — Pe = ¢ 15 small
permits the use of the form factors at ¢ = 0. Henceforth the notation
fi = fi(0), gi = g:(0) will be used. Note also that 3-vectors are set in
boldface whereas 4-vectors are set in lightface and are capitalized.

The conserved vector current (CVC) hypothesis implies that the 4-
divergence OV = O(YVy)/0z", where Vy(z) = [Vi(q)e'*da is the
Fourier conjugate of V(g¢), varnishes. This is because the 3-divergence sat-
isfies a continuity equation of the form

APVip) =0 Verb)
ozt Oxg

whence 9(pVa20)/0z = 0. Then for a well-behaved V(q)
OV =i j BV (q)be e diz = 0

means that ¢\Vi(q) is identically zero. Now consider

TNq

Vi = oanhld®) — i o

= 0

- Fold®) + - fola?)

and observe that from the Dirac equation

N = (NaPpy — VaPua ¥
= —(m,— mp )Y
= 8

and that ¢\o)\.¢" = —ql,oru,\q‘\ = () since o, is an antisymmetric tensor; this
means we are left with

9’2 2
@V = Efs(q )=

This requires fs(¢?) to be identically zero since in general ¢* # 0. Other
arguments using the CVC hypothesis yield f; =1 and f ~ 3.70.
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The values of g; have been determined experimentally to be 1.264+0.012.
But the existence and magnitude of ga(¢?) is still unsettled. It is allegedly
zero in reference [31] but not so in an experimental result[30] which gives
g» = 4.4 £ 1.6. So the cross-section will be calculated for both values of
¢ and the answers compared. Some ambiguity also surrounds ¢3(¢?); an
analysis of experimental data assuming that g2(¢*) = 0 yields

2
ga(m?) = (10 % 3);:;—”
7

where m,, is the muon mass. It will be seen as our work unfolds that g3(q?)
contribute negligibly to the matrix element. (In fact it is found that there
are no terms to order g3 in the cross-section).

The transition probability M? may be obtained by separately evaluating

M} = |(e¥ |3 7))

and

M2 = |(n|J]|n)>
We consider first the squared lepton element
M} = |(et]iwe)
= {0l (1 — 7—5)1;';,:(1},‘;@’10)12 (3.18)
The fields E;c and v, expanded in terms of plane-wave states are

_ Ll my, s)—(s iDu-X—iE 5 & —ipy-X—tE
¥, = =X L[5 [T + T ) 5]

Py 5=1,2

be = \/_172 Z g [bge}u(s)(pe)e:pe-x-—-lEgt+d})[es),u_(s)(pc)e—:pc‘x-hL'e!]'

pg S=1,2 €

(See reference [32] for the definitions of the operators bp, dp etc). Because
of the anticommutation relations for these operators, the by, operators in
the expansion for ¥, will commute pass the creation operator for the an-

tineutrino d:—,(fi") in (3.18) to end up at the right edge of the matrix ele-
ment. Since they are annihilation operators, they act on the vacuum state

|0) to give zero. Similarly all the df, operators in ¢, will commute with
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both %5, and d( <) to end up at the left edge of the matn\ element where

they act on (0] to give zero—ezcept for the single a' ) whose p. and s are

equal to p, and 3, associated with r.-'%:]. Here the antmonnnutation relation

{di;‘ ,(f;,(, )} = Opp'0ss implies
(s) gt(s) — (s 1(s)
dydyy = '"dp(c a4+ 1

The dpe in the first term on the righthand side will not contribute since
it acts on |0). But the 1 remains and so % is effectively replaced by the

plane-wave state (1/vV)\/m./E. -t*g'le_"f’*"‘*"E’* where p. and 3, are the
momentum and spin of the positron.

) t(s) d

. t(53,
An analogous procedure applied to dp{::" and the bp,’,dp, operators

in the expansion for i replaces the latter in the matrix element with
5 5z ) T
(5. o ~iby, x+ibz.t | general if n is a particle and 7 its antiparticle, the

U5, ©
rules fcn such substitutions are the following;:

Yy — _\/}? z;“ 'U-(s)(Pn )cipn-x—iE,,s
Yy — \/1_ Loy (sl(pﬁ)c—ip;xﬁE;;t
7 L [Ma_y Ty
Yy, —* W T (pﬂ)e Pn En

— 1 myx
?PF —y \/_

Thus the squared lepton element becomes

—(s)(pﬁ)cipn—x—ﬂﬂ;r

myme 1

M? =
i~ E,BE. V?

— B (p, ) (1 = 75)0 " (pe)? (3.19)

(the tildes on p and s are dropped). The Lorentz index A also appears
in the squared hadron element M3 and will therefore be contracted when
M? is evaluated. The part involving spinors in (3.19) can be written as a
two-part product

B (P (1 — 15 )0 (pe)?
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= [F9(p)7 (1 = 190 (po)] [FO@ (1 = 50 (o)
= [P (1 = 7)o (pe)] [{v (Pe)radra(l — A 70 (pe)}]
= [Py (1 = 1) (P )T (pe)r"(1 - 75)0%) (pe)] (3.20)

where we have used the definition of o)

70 = o100,

and the fact that for any expression I’ involving v matrices,
I'= 741—‘1’}'4-

The index g in (3.20) does not survive since the squared hadron element
M?, when written in a similar two-part form, furnishes an additional index
with which it is contracted. Note that this technique is possible because

(MOANM)N? = [(MJ)A(Mj).\][(-"ij'):ri(-“"ﬂf)ftl
= [(M)A(MD)L)(M;)\(M;))]]

since (M) and (M; )y are commuting scalars.
Finally by exposing the matrix indices hidden in the notation of (3.20)

O (P )]a (1 = 78)]aslv® (Pe)T (P geu(1 — 5))ec [0 (o))

we realize when the leftmost term is brought to the right-end that the
expression is really the trace of a 4 x 4 matrix. (Note that no matrix
index survives). Then the trace theorems in reference [32] can be applied
to greatly facilitate the evaluation of M7 and M?.

Now if the spin states of the antineutrino and positron are not specified,
i.e. if the incident antineutrinos are unpolarized and we are indifferent
about the spin of the positron (so long as a positron is produced), the spin
index s may be summed over to obtain

1mm, 1
P O I
x  Trace{y\(1 — 7s)[ Z v(”'}(pe)ﬁ(“](pe)]‘m(l —7s)[ Z v[“){Pu)ﬁ(s)(D;;)]}-

3=1.2 5=1,2

2 =
M =
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The factor of 1/2 comes from averaging over two independent reaction
rates, one for 7,(T) — e*(7) or e () (antineutlino spin-up to positron up
or down) and the other for 7,(]) — e*(1) or e*(l). Then with the help of
thie trace theorem (where the Feynman slash P=~,.P,)

(g yald(g) = —L T
Zs:t: (p)o*(p) Im
we have
o= 1mem, 1 L omi2pe-pu)x
i ) E.E,6 V2
Pt me ~ Pk
x Trace{ya(1 =) | —5— | (1l =) | =5 = |}
race{y( ‘Y)( o, Yu(l = 7s) 2, }

The above expression can now be expanded and simplified using various
other trace theorems (see [32]) to obtain

1 meMm,y, 1

2 E El, V2
X [ o (PoAPoy — 63, Pe* Py + Py Py + teximi e Pyp )]

e_‘.z[p’ —Pu )X

= (Pe,\Pu;x = 6,\;1Pe'Pu = Pc,u'Pp.\ N ?‘-ﬁ.\;mpPr:ch-p)

M?

E.E,V?
(3:21)
The squared hadron element begins as
2 Mmamy 1
Mj = E.E, V3

2

o\g” q.\ - s
(fz =L 92’}’5) — =——(fi —g37s) ul ](P;\)
2 2
2m 2m

When written as a trace with the sum over initial and final spin states

implemented, it becomes
2
114'3 = l 1 Le_i'z(pp—pﬂ)'x
2E.E,V?

< [@pn) [12(5 = gr0) =

x race { [’Y\(fl = 9175) ? (f2 = 9275) — _(fl = 9575)] (Rg:nm)

(fz — g275) — —(f1 = 9375)] (”’fj m)}

Zm

X

[’Yn(fl giys) — 3
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where m = (m, + m.?,) /2 has been written for both m, and m, and the
trace theorem
P+m

2m

> u(p)a(p) =

has been used. Considering only the term in ga, 1t is found that

2 qx BAm\ q P+ m
Trace 5 /s
I3 { 2m‘}} ( 2m ) 2M L ( 2m

when contracted with

(Ps.\-pu,u rad é,\ppc'vplf + Pc;dpir,\ G i I';f.\j!{fppta’ Pup)

from (3.21) gives a zero result. This means that there are no terms of order
g2 in the squared matrix element. Since in fact there is reason to think that
gs(¢%) at ¢ ~ 0 is small, it will be neglected in our calculation. The details
of the trace calculation are messy and will be omitted.

The answer, when all indices are contracted, is

MIM} = o b}p = 2P, - P.P.- P,P.- Pm™(f3 — ¢3)
— 4P, P.P.- P,(fig1 + 9192) — 2P, - P.P. - Pu(f} +2f191+ 97)
+ 2P,- Pom¥(fugi + g192) + Py - PP P,P, - Pam™(f; — g3)
+ 4P, - P,P.- P,(g192 — f192) + 4P, - P.Pe - Pu(2fagn — fi—9g7)
~ 2P PP, P,i?n_z:rng(j'?2 - gg) + 2P, - Py:fraﬁ(?f,gg - ¢192)
= 1/2P,: P.P.« P.m™*mi(fi — 93) — 1/2F; - PuPs- Pm™*ml(f} — 93)
+ Py Pam™mIml(f] — g3) +2(P. - P.)'(f3 +92)
+ 4P,-P,P.- Py(fig1 — 9192) + 4P. - P,P, - Po(f191 + 6192)
+ 4P.- P,m*(ff — gi) — 3/2P. - Pmi(f} + 1)

— 3/2P,- P,m%(f} + ¢%) — 2P, - Pam’(2fi92 — 9192)
— 2P, - Pomi(2fig2 + g192) + mim2(f; + 9’3)]

For the case in which g3 = g2 = 0 while the other form factors have values
as given earlier, we have the result

1
Taed -5 ;
Mi;M; = IViE.E,B,E, [3.1053 x 10~°P,-P.P,-P,P. P,
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+ 20.43P,-P.P,-P, —3.1053 x 10~°F,-P,P.-P,P,-P,
+ 0.2704P,.P,P,:P, +8.1086 x 107°P,-P,P,- P,

+ 2.0271 x 10°P,. P, P.-P, — 21.38(P.-P,)’

+ 2.072 x 10°P, P,

Here numerical values have also been substituted for m, m, and m,(= 0).
The case in which g, = 4.4, g3 = 0 is also given below for completeness:

1
4V4E,E,E,E,
39.78P,- P.P.- P, + 20.43P,-P.P,- P,

1.286 x 10~°P, P, P,-P,P,- P, — 4.576P,-P,F.-P,
0.2704P,-P,P.-P, — 3.358 x 10™°P,-P,P,- P,

— 1.700P,-P, — 8.396 x 10" P,- P, P.: P,

—~ 66.10(P.-P,)* +4.576P.-P, P.- P,

— 30.78P,-P,P, P, +2.072 x 10°P.-P, + T.491P, P, |

MEM? [1.286 x 107°P,- P.P.- P, P.- P,

+ -+ o+

If only low energy neutrinos are considered (such as those from the
Sun whose energies are typically < 15MeV), the highlighted term in the
above expression overwhelms the rest by a factor of about 100. The same
dominant term also occurs in the result where ¢, has the value zero instead
of 4.4. Then to within a few percent of the final cross-section result—
regardless of the choice of g,—we may approximate M 2 by

G* . 1 20.43
M? ~ (—— cos? GC_-) (B, PP, < Fu)
2 4VAE.E,E,E." "

2
« U pon ef{P,,+Pe—P,,—-P,)tl '

From a textbook? calculation using a sin z/x representation of the é-function,
we have

T/2 _ 2
[iim / d'e e'(Pn+Pc-Pp-P~1-r} = 27T6(E,+ E.— E,—E,)

T—oo J-T/2

x (2r)°V8*(pr + Pe — Pp— Pv)

?See for example Harris in [32]
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So the transition probability rate is

M? G2 (27! 5.108
-T— = ( 2 (‘.o‘q‘z Bf) 1/73) En EPELrEf_ (PI}'PCP“ .P“)ﬁq(‘{)“ + Pe - PP - P“)'
(3.22)

Averaged Cross-Section

Since the transition rate is sought for a proton with a distributed momen-
tum, the result in (3.22) must be averaged over the momentum spectrum
given by (3.16). The average, when the momenta of the final-state particles
are summed over, 18

i M? -

N=[ d&p, T3 Z 19 (3.23)
Pp Pn Pe

In the continuum limit as V — oo, (1/V) ¥, is replaced by 1/(27)? [, &°p

and so we have

1
N = — / f &p,d*p.d’p.
(27)2V Jp, Jou Joe T

5.108
——— (P PP . P 25%(P,+ P.— P,— P,)(3.2
i EREE,E,Ec( =t )é(pp)I"6°( ; v)(3.24)

Since the 8-function of 4-momenta, the inner products and the combination
&2 . . : : :

P are all Lorentz invariant, we will profit by evaluating the manifestly
Lorentz invariant expression

d3 . d3
N=[ [ P2CEe(p PP PP+ P~ P~ P)
in a frame in which the proton is at rest and the antineutrino is incident in
the z-direction. The é-function replaces every p. (say) with p, + pp — Pn
and relieves us of the d®p, integration. Noting that p? = (p, — Pn)® =

\/pﬁ + p2 — 2pnpy cos b, + m? there is then
(B, : PP, -Pa)
E.E.

X 5(\/}!3‘.21 +m?24+ \/pf, + p2 — 2p,p, cos b, + m2—m—p,)
(3.25)

N = f p? sin8,df,dé,dp,
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where &, and 6, are the polar and azimuthal angles for the neutron. The
¢, integration is trivial since we have azimuthal symmetry. The theorem

z— 2
8(f(2)) = ZD EIIEER
where zy’s are zeros of f(z) can be usefully applied here if we take z to be
cos B, (with dz = —sin,d6,) and f(z) = \/pZ + m*+ \/p:’ + p? = 2pupuz + me.
Then the é§-function in (3.25) simplifies to
6(2n — Zng)
PuPn/\/PE + P2 — 2papuzo + M2

8z — =
= ____(z D)[p,, +m — /p? + m?

PuPn

since z, satisfies p, + m — \/p2 +m? = \/pE + p2 — 2pupuzo + m2. I we
replace p.dp, with E,dE, and note that p, + m — P+ m? is just E,

then

(Pp'Pr:Pu'Pn)

Pv

N' = erfd'En

E,
— or f 4B, B2 (P, By — P Pas):

Pv
And when
(py + m)\/p? +m? — p,m —m? +m2/2
0 =
PuPn

is substituted, the integral can be evaluated analytically to obtain

Y E"mux
N = ﬁ (p, +m — E,)? 2 (p, +m — E,)?
Py 4im - 3

(3.26)
Enmiﬂ

where E, _,E, . are the kinematic limits on the neutron energy. The
transition rate can be cast into a manifestly Lorentz invariant form using

the identification |p,| = (P, - P,)/m and E, = (P, - P,)/m:
5.108|¢(p,)|? { m? [(Pu - P,/m+m — P,-P,/m)’ ,
m;

N = /p;z,dppdcﬁpdz

Q?TIIEPPJ,) PU - Pp 4‘”?‘
(P, P,/m + n; —P, - Pp/m):‘]Enmaz } (3.27)
E“mm



The total cross-section is related to the transition probability rate N

(cf. (3.3)) by
N
] 0dQ = ——

with the incident flux given by

¢
Jint‘ =
If

where ¢ = 1 is the velocity of the antineutrino and 1/V the number density.
The expression for the cross-section per incident antineutrino is then

5.108|6(p,)I? [ m® [(P,:P,/m+m— P,-P,/m)?
J!L’:f = /I—’i(lppfiz F PU ) IJP » 4”? I .”?3

(Pb‘ ' Pp/ﬂ} + T =— Pﬂ . Pp/ﬂ]' )3]E"ma:

Espy

: (3.28)

JE"“rrm:r

where we have effected the trivial integration over ¢,.

Kinematic Limits

The limits E E, . are convergent at the threshold and will in general
diverge as the energy available for the reaction increases. In (3.27) it is
seen that N vanishes when E, = [ The existence of a threshold
at which the cross-section vanishes is a purely kinematic effect, since the
matrix element does not vanish even for processes that are ‘off the mass
shell’ (i.e. for which the particles involved do not satisty E? # p? + m?).
Therefore to obtain a correct threshold effect, E,,,.. and E, . must be the
kinematic limits for the reaction 7.d — nnet. But because the field theory
calculation is of the 7,+p — net reaction rate, the é-function in (3.25)
obliges us to substitute p, 4+ p, — Pn for pe, thereby apparently conserving
momentum for the reaction 7.p — ne't (and thereby infracting momentum
conservation for 7.d — nnet). Hence one wonders whether momentum
conservation is calculationally violated. Nevertheless it may be argued
that once the 7.p — net reaction rate is obtained and convolved with the
pp spectrum, the total available momentum for the reaction v.d — nne’
will be carried by the antineutrino—we can assume without loss of ground
that the deuteron is at rest—since the momentum of the bound proton

Mmaxzx?

lmax Tmin*
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Figure 3.3: Kinematic configurations for minimum (A) and maximum (B)
neutron energy in the CM frame of the antineutrino and deuteron.

is canceled by that of the bound neutron. Then even though the proton
may have a large momentum, the momentum transferred to the final-state
particles must come only from the antineutrino.

The kinematic configurations for maximum and minimum neutron en-
ergy are shown in Figure 3.3. Configuration A is permitted for all E, >
E,, + 0.01 MeV where E,,, is the threshold energy (4.03 MeV ) for the
reaction. To prove this, we will first confirm our suspicion that the config-
uration is allowed kinematically. The energy and momentum conservation
equations are

E,+my = E,+ E.+m,
Bt = (Petpe) (3.29)

The positive-semi-definiteness of the 4-momenta inner product
E,-E;—p1-p220
leads to the observation that
(Ep 4+ E)? — (Pn +Pe)? = (mn + m.)?. (3.30)

Upon substituting E, 4+ ma — m, for E, + E. from (3.29) and solving for
E,, (3.30) becomes

(M + me)? — (Mg — my)?

B, 5
2(mg — My)
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Comparing this with the threshold kinetic energy E,,, given by the standard
formula
(M; — M;)(M; + M;)
2my
(2m,, + me — ma)(2my, + m. + my)
2my

E" th

where M, M; are the total final and initial masses and m, the mass of the
target particle, we realize that

E, > E,, +0.01 MeV.,

This means that configuration A is not allowed for the range of energies
from E,, to E,, +0.01 Mev. But for the small range one might as well
say that E, > E,,, and that A is allowed for all energies above threshold.

It is indicated in configuration B that the neutron n; attains its max-
imum energy when the other neutron n, and the positron go off in the
opposite direction with the same velocity. To see this, consider the three
particles in the CM frame of the deuteron and 7. Clearly no momentum
will be ‘wasted’ if the directions of n, and 7, are opposite to that of ny. If
further n, and 7. were to have the same velocity, then a frame can be found
in which both are at rest, hence have minimum energy, whereupon n, must
have the maximum energy possible. It can be shown that the configuration
that gives a particle the maximum energy in the CM frame will give it the
maximum energy possible in any other frame.

Now the total energy available for the reaction in the CM frame is

Eiy = (o +mg)? — P}

= 2p,mg+ma.

The equal-velocities condition

Pra _ Pe
Eﬂz —Ee
will be more useful when written as
Pny _ Pe
My e



Then energy and momentum conservation gives

Me
Pui = PuatPe=DpPnp (14 mn)
Eﬁl = E(;’.u“r — E?lz o Ec

= Hom= (1 + ?'r:e) Eny.

My

The steps that lead to E,, in terms of p, and the masses are as follows:

2
(Ecn-r —Em) = BB (i Ry

1+ me/m, "

: 2
- [+
My + Mg

So
2 2 3 2 9
Eéy + E,, —2EcmEn, = pp, +(ma+ me)
2 2 i
Eéy —2EcyEn, = m,+2mame.
and

Bty - m? — 2m,m,
1
2FEcm
2 2 —m?2-2
2pymg +my — mg — 2mpie
i
dp,mq + 2mj

Transforming back to the rest frame of the deuteron gives

1 .
Eﬂ.maz == W(En1 + fB:pTl])
where 5
b= P, +my

Configuration B is permitted for all E, above threshold. The graphs of
E and E are plotted in Figure 3.4; E is horizontal at m,, = 939.6

Thmar Nmnin Mmin
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Figure 3.4: Phase space limits on the neutron energy for 7.d — nnet



MeV except for the very small region right above threshold shown in the
inset. The permitted neutron energies lie within the wedge shape area.

The Lorentz invariant expression within curly brackets in (3.28) can be
evaluated in any frame. For our choice the rest frame of the deuteron, we
have

P Vb _ EyE, — pup,y cos 8,
m m
since the neutron is either at rest (minimum energy), in which case p, =0
and the cosine term does not matter, or moving with maximum energy, in
which case it must travel along the incident direction of the antineutrino
(z-axis). The integral over 6, and p, in (3.28) was evaluated numerically
and the answer plotted in Figure 3.5.

Distressingly a comparison of the our total cross-section result with
those of Ying et al[29] shows not even an order-of-magnitude agreement
(see column (1) in Table 3.1). In fact the graph does not even appear like
that of a properly calculated cross-section. However, if the kinematic limits
on the neutron energy for the reaction 7.p — ne™ were used instead, there
is fair agreement (see column (2)) for incident energies above ~ 10 MeV
(i.e. those far above the threshold of the deuterium reaction). Since these
limits converge as they should at the lower limit of ~0.5 MeV, which is the
threshold for 7.p — ne*, any agreement with Ying's results is obviously
impossible for low energies. The cross-section calculated using these limits
1s plotted in Figure 3.7.

Table 3.1: Comparison of cross-section results.
E, (MeV) ot (107*cm?)
KJ-MLT (1) KJ-MLT (2) Ying
5 1.58 x 10!  6.48 x 107! 2.48 x 10~*
10 4.70 x 10! 373X 10 1.23x10°
20 6.39 x 10° 1.69 x 10" 1.12 x 107
30 1.01 x 10 3.84 x 10!  3.55 x 10!

To discover the kinematic configurations in which the neutron in the
process 7,p — ne't has limiting energies, consider the CM frame of the pro-
ton and antineutrino. There the neutron and positron will go back-to-back
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Figure 3.5: Deuterium-neutrino total cross-section calculated using
7.d — nne™ phase space limits,

(51
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along any direction. Hence the directions that give the neutron maximum
and minimum energies are respectively those parallel and antiparallel to
that of the boost to the CM frame (i.e. along the direction of the incident
antineutrino). The hmits E = B are

Tnaz,min

1 2 2 2 2
Bi- = 3(m2 + ompp ] {(p,, +m, )(p, + 2mpp, + my, + my — m;)

> {(p,, +m, ) (p? + 2m,p, +m? + m — m?2)?

1/2
= (m?, <+ )???pbv)(p + 2myp,, + m + m == m + 4,'?,,??1 )]{ / )}
(3.31)

which the reader may derive from

Po = P I=py
EV + Tn'p = Ee + En

(and indeed simplify!) This expression yields the correct threshold as the
phase space plot in Figure 3.6 shows.

The matrix element as a function of the 4-momenta of the interacting
particles is expected to be fairly uniform over the small range of incident
energies that are being considered. So the cross-section can depend sub-
stantively only on the phase space limits of the reaction. (One can perforce
think of the cross-section as [g+ M28(p;)d®p;/E: ~ M? [£* §(p;)d®p;/E;
(cf. (3.23)). An inspection of the phase space spectra (Figures 3.4 and
3.7) for the inverse beta and deuterium reactions reveals that although the
lower boundary for both are approximately equal, the upper boundary for
the latter reaction rises about twice as fast. From this arose the difference
between the two results in column (1) and (2) of Table 3.1, since the cross-
section increases roughly as (E; — E_). Now which result is the more
meaningful? One can say that the result in column (2) is valid only for en-
ergies above ~ 10 Mev (and it should really drop to zero at the threshold of
~4 MeV for the deuterium reaction). The problem for the result in column
(1) is that we have imposed a set of kinematic limits from one process on a
matrix element for a different process. The argument given earlier for this
imposition have perhaps come to no avail.



Figure 3.6: Phase space limits on the neutron energy for 7.p — ne™.



Figure 3.7: Neutrino-deuterium cross-section calculated using 7,p — ne™

phase space limits.
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Better Approximation

The preceding analysis takes no account of the Pauli exclusion of the final-
state neutrons. To do so one has to obtain their wavefunctions, as follows.
Since the spectator neutron retains its momentum distribution from the
bound state, its wavefunction is

Ya(pay 52) = ¢(p2)o(s2)

where ¢ is a spin-wavefunction. The other neutron comes from the proton
and has the wavefunction

'351’1(13'1 s 'S]) = -ﬂI(Pl- Pp'. PU} Pc-. 51, Sp)é(pp)o(qp) (332)

where M is the transition matrix element in (3.17). To give (3.32) the
character of an average over the ‘input’ proton states, p, should really
be integrated over. But this will be deferred until the antisymmetrized
wavefunction 1s ready to be squared. It 1s not necessary to integrate over
the spin states s, if we assume the proton is unlikely to flip its spin so that
51 can be identified with s,.

The joint wavefunction of the neutrons is then

. 1 "
?l’(Pl;Sl;Pz,-“-z) = %[ﬁh(f?u-91)'¢2(P2=-92)*',“’/‘1(172;32)"‘.—”2(}31181)]

= %[ﬂf(ﬂ s Py sty 8ps e )0(pp)0(p2)o(s1)o(s2)

- ﬁ/I(PQS Pp! S2y8py )é(pp)é(pl )0(32)0(31 )]
= %[‘AJ(PI'JP}MSM‘SP:' : )‘r‘b(pp)(ﬁ(pZJ

- ﬂJ(P'b Pp*. 82, 8p, " )é(pp)d"(pl )]J(Si )0(32)

The total cross-section is related to the probability N4 of getting two prop-
erly Pauli-excluded neutrons by

Ny

J inc

Tt =

where ;

Ny= fd3pedapxd3pzd3pp > ¥(prs s15p2, 52)]| -

81,82

61



Since a very large number of terms will arise when | Y #|? is evaluated,
our calculation will adjourn here. To the student who wishes to complete
this problem, we will point to a possible simplification in that no spin-
wavefunctions will appear in the final result for |} |%2. This is because
o(s1)o(s2) can be expanded in the spin basis states

o(1/2)0(1/2),0(1/2)0(=1/2),0(~1/2)0(1/2),0(~1/2)o(~1/2)

(or in fact also in the symmetric triplet spin states since the nucleons have
parallel spins); and so by virtue of their orthonormality, only spatial terms
remain when ) is squared with the spin sums implemented.

3.3 Conclusion

Critique

The cross-section for the reaction 7.d — nne* was calculated using a
spectator-neutron model for the interaction without accounting for the
Pauli exclusion of the final-state neutrons. The interaction is represented
as one between only the 7, and the bound proton having a distributed mo-
mentum that is specified by the deuteron ground state. This representation
and the calculation on which it is based are unsatisfactory because:

1. The picture of a 7, engaging selectively the proton and turning it
into a neutron while leaving the other neutron intact is unrealistic.
Morever the structure of the deuteron has to be investigated since it
is necessary to know how the proton is being ‘presented’ to the ..
This introduces the bound state description which is relativistically
inadmissible (see item 2). One could either avoid the structure and
bound state issue by depicting the interaction as between a 7, and
the deuteron treated as an elementary particle or use a nonrelativis-
tic theory for the calculation. The former alternative may perhaps
be pursued in another project, although the form factors for the cor-
responding process (see [26]) are complicated and rather inaccessible
to the student at this stage.

2. Relativistically the deuteron mass is associated with an energy which
fixes the momenta of the proton and neutron (which are equal and
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opposite by momentum conservation). But the momenta cannot be
fixed—or else the particles will be free—in a bound state. Therefore
either energy cannot be conserved in a bound state or such a state
cannot exist. More fundamentally the potential well is really instan-
tancous action-at-a-distance which is not permitted in a relativistic
theory. A consistent relativistic treatment of the bound state still
awaits discovery.

A consequence of at once applying both relativistic quantum field
theory and a bound state description is the dilemma of two incom-
patible 4-momentum (i.e. energy and momentum) conservation re-
quirements. One is built into the field theory that was used to cal-
culate the transition rate for the process 7,p — net. It manifests
as the é-function in (3.8) and conserves 4-momentum for the pro-
cess 7,p — net. The other requirement conserves 4-momentum for
the process 7.d — nnet and was imposed in the effort to conceive
a threshold energy for the cross-section. But no sooner was the rea-
sonableness of the latter requirement asserted have the cross-section
been found to be too large by two orders of magnitude. So finally the
kinematic limits for the first reaction have to be used and the result-

ing cross-section said to be valid only for incident energies above ~ 10
MeV.

Finally the exclusion requirement of the final-state neutrons was waived
for the sake of a manageable calculation. The proper implementation
of exclusion as sketched earlier is algebraically quite intractable; but
conceptually 1t 1s simple since no ideas beyond elementary quantum
mechanics are involved. Perhaps a courageous student will take up
this project in the future.

Commendation

As shown above our calculation 1s flawed in more ways than one. So it is
not surprising that the cross-section should disagree with published results.
Nevertheless discoveries were made in the stray that included the following:

1. The matrix element in (3.28) was found to depend only marginally

on the coupling constants f,, g; and g3. The last two were set to zero
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in the calculation; and in fact if f; were also set to zero, so that the
matrix element would be

;M ~ (ﬂI’fT}pfl‘Y-\(l == 9|/fl’)“s)'¢”n|l))<e+ ]Eu”x"\(l — V5 )Pe|Pe)
instead, then the result is

M? ~ 2043P,-P.P,-P, + .2704P,- P, P, - P,
+ 2.072 x 10°P. - P,

which contains the same dominant P,- P, P, - P, term as before. Thus
all but the Ist-class current coupling constants f; and ¢; scarcely
contribute to the matrix element and hence to the cross-section. This
observation is in accord with the experimental difficulty of measuring

¢> and g3 (and the uncertainty in their values)?

The cross-section for the reaction 7.p — ne' is also obtained (Figure
3.8)—almost effortlessly since we already have the matrix element.
Its value at very low incident energies (< 5 MeV) is ~ 107 em?,

which 1s what should be expected.

It is seen that the cross-section depends sensitively on the phase space
limits of the reaction. In fact it is customary in problems at higher
energies to factor out M? (cf. (3.23)) from the phase space integral
and focus only on computing the latter.

Finally the model of the interaction, albeit unrealistic, allows one to

tackle the problem using elementary quantum mechanies such as the bound
state description and a simple field theory calculation—and to do so without
very elaborate mathematics. The alternative would be to follow Mintz[26]
and use a lot of complicated form factors (so that one rapidly gets lost in
the formalism); or to follow Weneser[27] and use a nonrelativistic treatment
(but then one would not have cause to learn quantum field theory).

3That 2nd-class currents do not contribute much to the cross-section is in fact peculiar
to low-energy reactions.
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Figure 3.8: Total cross-section for 7,p — ne*



Appendix A

Computer Programs

This is the REDUCE program used to calculate the trace expressions. Ex-
tensive hand calculations have been performed to verify its results,

ON DIV;

OPERATOR GP1,GP,VC,AC,LC,FC;

VECTOR PE,PV,PN,PP,Q;

MASS PE=ME,PV=MV,PN=M,PP=M;

MSHELL PE,PV,PP,PN:

FOR ALL P,M LET GP1(P,M)=G(L1,P)+M;

FOR ALL L,V LET VC(L,V)=G(L1,L)*F1+(G(L1,L)*G(L1,V)-
G(L1,V)*G(L1,L))*(Q.V)*F2/(4*M);

FOR ALL L,V LET AC(L,V)=(G(L1,L)*G1+(G(L1,L)*G(L1,V)~
G(L1,V)*G(L1,L))*(Q.V)*G2/(4%M))*G(L1,4);

INDEX V,Vi;

LET (V.V)=4, (Vi.V1i)=4, F2=0, G2=0;

LC:=G(L1,L)*(1-G(L1,4))*GP1(PE,ME)*
G(L1,J)*(1-G(L1,A))*GP1(PV,MV);

HC:=(VC(L,V)-AC(L,V))*GP1 (PP, M)*
(ve(J,v1)-AC(J,V1))*GP1(PN,M);

INDEX L,J;

LET Q=PV-PE;

M2:=HC*LC;

LET Fi=1, G1=1.26, MV=0, ME=0.511, M=939;

M21:=M2;

;END;
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This FORTRAN program computes the integral in (3.28). It has two
qradrature routines QTRAP and QSIMP taken from W.H.Press et al, Numer-
ical Recipes.

PROGRAM CROSS

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /BLK1/ RMN,RMP,RME,RMD
COMMON /BLK2/ PP,PV

RMN=939.6
RMP=938.3
RME=0,511
RMD=1875.6

102 A=-1.
B=1:
11 DO 10 I=8,40
PV=.5%I
SUM=0.0
DO 20 J=1,1200
PP=0.3%]
CALL QSIMP(A,B,S)
SUM=SUM+S*.3
20 CONTINUE
CS=.1227*SUM
WRITE(19,50) PV,CS
WRITE(6,50) PV,CS

10 CONTINUE
50 FORMAT (2E15.6)
END

SUBROUTINE QSIMP(A,B,S)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (EPS=1.E-6, JMAX=20)
0ST=-1.D30

0s =-1.D30

DO 200 J=1,JMAX
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CALL TRAPZD(A,B,ST,J)
S=(4.*ST-0ST)/3.
IF (ABS(S-0S) .LT. EPS#ABS(0S)) RETURN
0S=8
200 0ST=ST
PAUSE ’Too many steps’
END

SUBROUTINE TRAPZD(A,B,S,N)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
IF (N .EQ. 1) THEN
S$=0.5%(B-A)* (FUNC(A)+FUNC(B))
1T=1
ELSE
TNM=IT
DEL=(B-A)/TNM
X=A+0.5*DEL
SUM=0.0
DO 100 J=1,IT
SUM=SUM+FUNC (X)
X=X+DEL
100 CONTINUE
§=0.5%(S+(B-A)*SUM/TNM)
IT=2%IT
END IF
RETURN
END

FUNCTION FUNC(Z)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /BLK2/ PP,PV
EP=SQRT(PP*PP + 880369.)
CALL ENXN(PV,PP,ENMAX,ENMIN)
FUNC=SIP(PP)*SIP(PP)*(TG(PV,PP,ENMAX,Z)

1 -TG(PV,PP,ENMIN,Z) )/ (EP*PV)

RETURN

END
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FUNCTION TG(PV,PP,EN,Z)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /BLK1/ RMN,RMP,RME,RMD
PN=SQRT (EN*EN-RMN*RMN)
EP=SQRT (PP*PP+RMP*RMP)
D=(PV*EP-PV*PP*Z) /RMP
E=(EN*#EP-PN#PP*Z) /RMP
TG1=D + RMP - E
TG=RMP*#*2# (TG1i**2*RME**2/ (4 .0xRMP) - (TG1%*3)/3.0)/D
RETURN
END

SUBROUTINE ENXN(PV,PP,ENMAX,ENMIN)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /BLK1/ RMN,RMP,RME,RMD
BETA=PV/ (PV+RMD)
GAMMA=1.0/SQRT(1-BETA*BETA)
ECM=SQRT (2 .0%*PV*RMD+RMD*RMD)
EXCM=(-RME**2 - 2.0*RMN*RME + ECM*ECM)/(2.0%*ECM)
ENMIN=RMN
THRSH=EXCM*EXCM-RMN*RMN
IF (THRSH .LE. 0.0) THEN
ENMAX=ENMIN
ELSE
ENMAX=GAMMA* (EXCM + BETA*SQRT (EXCM*EXCM-RMN*RMN) )
ENDIF
RETURN
END

SUBROUTINE ENXN1(PV,PP,ENMAX,ENMIN)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON /BLK1/ RMN,RMP,RME,RMD
A1=PV*PV + 2%RMP*PV + RMN*RMN +RMP*RMP - RME*RME
D1=(PV+RMP) #*2%A1%A1
D1=D1-4.* (RMP*RMP+2 . *RMP*PV)* (A1%A1/4+PV*PV*RMN*RMN)
IF (D1 .LE. 0.0) D1=0.
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£2=2 % (RMP*RMP+2 . *RMP*PV)
ENMAX=( (PV+RMP)*A1+SQRT(D1)) /A2
ENMIN=((PV+RMP)*A1-SQRT(D1))/A2
RETURN
END

FUNCTION SIP(Q)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PI=3.1415927
ZK1=170.0071
ZK2=45 .6572
A=0.0108122
B=1.76069186
D=2.7819841
SIP=(B* (Q*SIN(ZK1%*A)*COS(Q*A)-ZK1*COS(ZK1*4)
*SIN(Q*A) )/ (ZK1%ZK1-Q*Q) + D*EXP(-ZK2*A)* (ZK2*
SIN(Q*A)+Q*C0OS (Q*A) )/ (ZK2xZK2+Q*Q))
RETURN
END
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