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A previous lattice-kinetic model based on the Bhatnagar-Gross-Krook (BGK) approximation of the Boltz-
mann equation is extended to model a fluid consisting of an arbitrary number of miscible components.
The extended model features Galilean invariant and noise-free dynamics as well as a velocity-independent
pressure. The macrodynamical equations are derived using a Chapman-Enskog expansion and shown to be
similar to the governing equations for a convective-diffusive mixture of fluids. Expressions for the transport

coefficients, which are determined by free numerical

parameters in the model, are obtained and numeri-

cally verified. The utility of the model is demonstrated by a simulation of 2-dimensional Rayleigh-Taylor

instability.

1 Introduction

Since the pioneering work of Frisch et al[10], and of
d’Humiéres et al[6], in which lattice gas cellular au-
tomata (LGA) in 2- and 3-dimensions respectively
were introduced that captured the behavior of phys-
ical gases, these models have proven to be viable al-
ternatives to conventional computational methods for
simulating hydrodynamical phenomena[8]. Although
the LGA has many advantages as numerical schemes,
such as its intrinsic stability due to the boolean nu-
merics, the ease with which boundary conditions can
be incorporated, and high parallelizability, it suffers
from several disadvantages. The severest one is the
presence of a high level of statistical fluctuations in
the microscopic dynamics, thus requiring the use of
coarse-grain averages over space or time to obtain hy-
drodynamic variables. In addition, the dynamics of
the LGA is not Galilean invariant, due to the pres-
ence of a density-dependent factor in the nonlinear
advective term in the macrodynamical momentum
equation. This factor also affects the pressure term,
causing it to depend on the velocity. Also, spurious
Invariants may be present because of the oversimpli-
fied dynamics.

In this paper we show how to extend a model orig-
inally proposed in [16, 15], which is based on the
Bhatnagar-Gross-Krook (BGK) approximation of the
Boltzmann equation[2], to describe a fluid consist-
ing of several miscible components. The models in
(16, 15, 5] (henceforth refered to as LBGK models)
are motivated by the restoring of Galilean invariance
to the dynamics while at the same time retaining the

advantages of the LGA and the lattice-Boltzmann
equation(l] (LBE) models (in particular the absence
of statistical noise in the latter). The LGA and LBE
have been used to model miscible and immiscible mix-
tures before(3, 7, 12, 11]. In [12] for example, a low-
diffusivity LBE model for a miscible two-phase fluid
has been proposed that involves the use of non-local
interactions. The procedure involves collision rules
that require the maximization of the projection of
the species flux on the species concentration gradi-
ent at each collision step. This procedure is com-
putationally expensive and its extension to model
a three-phase fluid appears to require substantially
more computational resources than does the two-
phase model{11]. The model we propose is simple,
efficient, and can be extended trivially to an arbi-
trary number of components. The method is to de-
fine the appropriate local equilibrium population for
a mixture of fluids and then employ discrete analogs
of the BGK equations to compute the time evolution
of the average population of each species. The gen-
eralization to a reacting mixture, in which particle
sources and particle type exchanges are allowed, is
straightforward[18).

The paper will be organized as follows: In Sec.
tion 2, we briefly review the LBGK model proposed
in [16], describe the extension of the model to mis.
cible mixtures and derive the macrodynamical equa-
tions and the transport coefficients using a Chapman-
Enskog analysis. In Section 3, we will numerically
verify the theoretical predictions for the transport
coefficients and also demonstrate the utility of the
model with a 2-dimensional simulation of the growth
of miscible fingers and bubbles on a Rayleigh-Taylor
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unstable interface.

2 Miscible Fluids Model

2.1 The LBGK Model

In the spirit of the so-called LBE model with en-
hanced collisions(1], in which the elements of the col-
lision matrix are considered as free parameters that
are adjusted to obtain desired values of the transport
coefficients, the LBGK model uses a similar evolution
equation

Npi(x+cpi,t+1) = Npi(x,t)—w [N,,.;(x, t) — N;i(x, t)]
(1

in which the collision matrix is replaced by a single
parameter w. Here Np; is the average population of
particles with velocity ¢,; (the indices p and ¢ are ex-
plained below), and x is the position vector of a node
on the lattice. A generic choice for the equilibrium
population, N7 (x,t), is

Cpiqle UgU CpiaClpi,
N - ¢ 1 pra o alg pialpiff _5
P o c? + 2c? c? af
)

Here o and S are indices for the Cartesian com-
ponents of the particle velocity (Greek letters shall
henceforth denote the Cartesian components of a vec-
tor). The hydrodynamic velocity and density are de-
noted by u, and p respectively. The additional index
p is equal to the square of the modulus of the parti-
cle velocity cpio and has been used to distinguish be-
tween velocities having different moduli. The index 2
denotes the different velocities in the same speed class
p. The constant ¢ is proportional to a weighted av-
erage of the cyis's and is identified as the speed of
sound in the model. Finally, ¢, is a weighting fac-
tor, which depends on p and which is adjusted to ob-
tain isotropic fourth-order tensor products of ¢piq and
to ensure Galilean invariance of the dynamics. The
choice (2) for the equilibrium population, when used
together with (1), can be shown to lead to macrody-

namical equations, which, when truncated after the
second order in u,, are similar to the Navier-Stokes
equations[17].

Figure 1 shows an example of a lattice, together
with its set of possible velocities, drawn from the
class of square, cubic and hypercubic lattices to which
the model may be applied[15]. We have followed the
notation in [16] and denoted the lattices by DzQy,
where z indicates the spatial dimension and y is the

¢

Figure 1: The D2Q9 lattice.

total number of different velocities. In this paper we
will deal with the DzQy class of lattices only. How-
ever we emphasize that the idea that a weighting fac-
tor be used to insure the isotropy of the fourth-order
tensor product of cpin can be applied to lattices not
of the DzQy type as well[16].

In the macrodynamical equations, we are always
concerned with the moments of c,;. These involve
the weighting factor t,, which is determined by the
requirement that EF t,b, = 1 (where b, denotes the
number of different velocities in the same speed class)
and that the fourth-order tensor product of velocities
Zp,i tpCpiaCpifCpiyCpis 15 isotropic and also that the
dynamics be Galilean invariant. The values of ¢, for
the DzQy lattices with various values of z and y may
be found in [16]. For these lattices, the following
relations hold

b?
Zcpialcpia;"'cpiam =0, m=1,35--- (3)
=1
by
th Z CpiaCpip = Ci0ap  (4)
P i=1
b,
Z tp Z CpiaCpifCpiyCpis —
r =1
< (Bapbys + Bspbya + Sypbas)  (5)
where

1
2
= - 6
Cs 3 ()

is a value that is independent of the spatial dimension
but is correct for DzQy lattices only. Other values of
¢, apply when the lattice is not of the DzQy type[16].
The relations (3)—(5) will be used in the derivation of
the macrodynamical equations in Section 2.2.
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2.2 Extended Model

We first extend the definitions of the mass and mo-
mentum densities for a simple fluid to a mixture of
fluids[4]. Let N,p; denote the average population of
particles of the rth species with velocity cpia- The
total mass density p is given by

o= 3 Nopi(xt). 1)

TPt

while the mass density p, of the rth species is
pr =D Neps ®
P

Note that the sumn is not taken over r in (B). Also, the
space and time dependence of N,p: in (8) is implied,
and will be implied henceforth in the analysis. The
velocity 1, In a mixture of fluids is defined as the
total momentum of unit mass of fluid. That is, it is
defined via the relation

Al = Z Nrpchicx' (9)

TPt

The additional hydrodynamical variables relevant to
a mixture are those that describe the local composi-
tion of the fluid. These are the concentration ¢, of
the rth species and are defined as

(=2 (10)
P
In a mixture consisting of nonreacting species, the lo-
cal concentration of each species changes through the
mechanical mixing of the fluid and through mutual
diffusion. From the definition (10), the ¢,’s satisfy

Se=1 (11)

r

Hence for a mixture having a total of R species, there
will be (R — 1) independent equations of motion for
the ¢, ’s.

The generalization of (1) to a mixture of fluids is
taken to be

Nrpi(:nlx + Cpia1t+ 1) =

Nopi(@as t) =~ wr [Nopi(Zas t) = N:Pi(z,,,t)] (12)

where possibly different relaxation parameters wr
may be assigned to each species. The local equilib-
rium population N;,; can be inferred from a general-
ization of the H-theorem for a mixture of fluids and
is given by

N = e N (13)

with Nj; given by (2). Equation (13) may be taken
to imply that the dynamics are attracted to separate
equilibrium states corresponding to each component
but which are coupled via the velocity ua-

The equations governing the large-scale dynamics
of (12), in which the local equilibrium distribution
Nf,; is taken to be given by (13), will now be derived
using a Chapman-Enskog expansion. Since similar
expansions for the LGA and LBE have been used
before (see for example (8, 9]), we will only outline
here the steps necessary to obtain expressions for the
transport coefficients. We assume a weak disequilib-
rium expansion

Nepi = N + CNT(;) + <2NT(;3 4o (14)

where ¢ is the appropriate Knudsen number for the
flow. The space and time derivatives are expressed 1n
terms of multiple-scale variables as

8o = €0a {15)
8, = €0y, —‘:—(2317. (186)

Since mass and momentum are conserved, it follows

from (12) and (14) that

Zw,ij} = 0, i>0 (17)
Pt
Zw,Nr(;ch;a = 0, 7> 0. (18)
TP,

Also implicit in the lattice-BGK model is that the

non-equilibrium populations Nr(;g, j > 0, satisfy the
constraints
SN =0 >0 (19)
Pt
Y Nea = 0, §>0  (20)
TP
SN =0, i>D (21)
pii

where (21) expresses the conservation of the mass

; : (7). .
density of each species. However, Yoo NepiCria does
not vanish in general, since there can be transfer of
momentum from the particles of one species to par-

ticles of a different species.

By expanding N,p; in a Taylor series about z, and
t, and using (15) and (16), we obtain first and second
order equations in ¢; we then take the zeroth and first
moments of ¢p; in these equations to obtain

0 (22)
0 (23)

821,0 + Oa (Pua)
Oy, (pua) + 05Jap



where it can be shown using (5) that
Jap = ¢2pbap + priatp (24)
Using (17), (18), (22) and (23), we also obtain
8.p = 0 (25)

2

8e,pua + Bp Z(l

TPt

) rpoP"("CP"ﬁ =0.

(26)

Equation (25) implies that there is no diffusion of the
total mass density, while (26) accounts for the effect
of viscous momentum fluxes.

Following the development of the Chapman-
Enskog expansion, Nr(;i) will now be expressed in
terms of derivatives of the macroscopic variables.
Here we will also need equations corresponding to
(22) and (23) in which the index r is not summed
over. These are

81)/77- + atx (pr ua) - 0 (27)
Be, (pria) +28upr  +

aﬁ (pfuauﬁ) = —wr Z rp1 CF‘O‘

(28)

Note that Z ,_pl cpm corresponds to the non-
equilibrium mass Aux of species r and does not vanish
in general. To O(u) this flux is given by

2 rpt CP"“ -

1
~ [’9h (prua) + cfaap,.] + O(u?).

(29)
It is easy to show using (23), ( 4) and the relation
pr = pc, that 8y, (pe,ua) = —c2c, 8,p+0O(u?). Hence

Z rp'LCPW‘ = _"—.'pa e + O( ) (30)
Using (13), (27) and (28), we obtain finally,

t CpiaCpi
NGb = -2 K—*—p L - 5aﬁ> 8 (prua)

w, 2
+  CpiapBacy) (31)
It is easy to check that the conditions (19)-(21) are

satisfied by Nr(;g. Substituting (31) into (26), we ob-
tain finally

c?

3., (pua) — g {53 (% - 1) (0 (pup) +
9p (puall} =0 (32)

where we have defined the “equivalent” relaxation pa-
rameter w via the relation
1 [=
~ = . (33)
w w.
r

Equations (22), (23), (25), and (32), i.e the dynami-
cal equations from the two separated time scales 1/e
and 1/€?, will now be reconstituted to obtain the
macrodynamical equations for the model. The equa-
tion of continuity is obtained from (22) and (25) by
multiplying the former by ¢ and the latter by €% and
then adding the two equations; and the Navier-Stokes
equation is obtained from (23) and (32) in the same
manner. We obtain

Sp+ 0. (pus) = 0 (34)
8: (pua) + 9p (puaup) = —c;8ap+ 95 [v3p (pua)
+ (Ba (pup)] (35)

where the coeflicients of shear viscosity v and bulk
viscosity ( are given by

u:<:§(3_1>. (36)

We will now obtain the equation of motion for the
concentration ¢,. The equation corresponding to (25)
in which indices p and i are not summed over is

atgpr - (_ - 1)

which shows that there in general the species mass
densities changes on the diffusive time scale. Sub-
stituting (30) into (37), we obtain, correct to O(u),
the convective-diffusive equations for mass density of
each species

szpfcpm =0 (37)

8 (per) + 8 (pertia) = 8o (D, pOacy) (38)

where the diffusivity is given by

D,:;i(i‘l). (39)

Wy

For a mixture of two species with p; = p; and
w1 = wy, we find that D; = D, = v. This is not sur-
prising, since the concentration variable is analogous
to the temperature in the BGK approximation and
the Prandt]l number (ratio of viscosity to temperature
diffusivity) of a gas that satisfies the BGK equation

is unity. Also, notice that since L Nf;)cpm does
not vanish in general, {18) implies all but one of the
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Figurc 2: The shear viscosity v for a two-species fluid
as a function of 1/wz for a fixed value of w; = 1.8.
The solid line through the experimental points cor-
responds to the prediction of the Chapman-Enskog
analysis, and the measurements are made on a 32x 32

D2Q9 lattice.

w,'s are freely adjustable. Thus in practice one pre-
scribes values for the equivalent relaxation parameter
wand w,, r = 1,2,---, R — 1 (where R is the total
number of species) and uses the equations (12) for
Nepiy 7= 1,2, R — 1, together with an additional
equation for the total population Np; = > orpi Nopi
(which is exactly similar in form to (1) with the corre-
sponding Nj; given by (2)) to compute the evolution
of the dynamics.

3 Numerical Experiments

Here we present measurements of the diffusivity and
shear viscosily for a two-species fluid modeled on a
1)2Q9 lattice with 1 rest and 8 moving particles. Fig-
ure 2 shows v as a function of w; for a fixed value
of wy = 1.8. Here the density is the same for both
species and v is obtained by measuring the relaxation
of a sinusoidal shear fluctuation. Figure 3 shows the
diffusivity D; as a function of w; for fixed w; = 1.8.
It is obtained by measuring the decay of a sinusoidal
perturbation in the concentration. The solid lines in
these figures represent the values predicted by the
Chapman-Enskog analysis.

One possible application of our model is the sim-
ulation of two-fluid miscible displacement in a Hele-
Shaw cell{14, 20]. The Hele-Shaw cell is an analog
for the study of two-dimensional two-phase flow in
porous media[19, 13]. A qualitative feature of mis-

RS s B S

0.3 .

& 02| ]

0.1 + -

. _

(IS SPUNPU EUTI IUNAPS BT R

0.6 08 1 1.2 14 16
1/w,

Figure 3: The diffusivity D; for a two-species fluid
as a function of 1/w; for a fixed value of wy = 1.8.

The solid line through the experimental points cor-
responds to the prediction of the Chapman-Enskog
analysis, and the measurements are made on a 32x32
D2Q9 lattice.

cible displacements which our model should repro-
duce is the instability phenomenon known as “vis-
cous fingering”. We test the feasibility of our model
for simulating such flows by performing a simula-
tion of a flow consisting of two layers of fluid of the
same density, initially with a random perturbation on
the interface, and subsequently accelerated towards
each other. The body forces on the fluids can be
incorporated by simply adding a term of the form
%%p,c,,gaf,a, where f,o is the force per unit volume,
to the r.h.s of (13). It can be shown easily that this
term reproduces the required body force term in the
Navier-Stokes equation. Figure 4 shows the concen-
tration field after the two fluids have penetrated into
each other for some time. It is seen that the diffu-
sive dynamics furnished by the model, coupled with
a Rayleigh-Taylor-like instability mechanism, kas led
to the growth of viscous fingers and bubbles. A more
detailed comparison of our numerical results with
those obtained using other methods and with physi-
cal experiments will be done in the future.

4 Conclusion

We have introduced a simple generalization of the
LBGK model for the simulation of multiphase misci-
ble fluids. A Chapman-Enskog analysis of the model
shows that the component diffusivities and viscosities
are adjustable through the use of different relaxation
parameters for each component. The theoretical ex-




Figure 4: A gray-scale contour plot of the concen-
tration field of two layers of fluid, of the some den-
sity and initially superposed one on the other with
a random perturbation imposed on the interface, are
accelerated towards each other. The size of the grid
is 64 x 64 and w; = wy = 1.7.

pressions for the shear viscosity and diffusivity are
found to agree with numerical experiment. A possi-
ble application of the model is demonstrated with a
preliminary simulation of two-dimensional two-phase
miscible fingering.
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