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Lattice-BGK Approach to Simulating Granular Flows
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Many continuum theories for granular flow produce an equation of motion for
the fluctuating kinetic energy density (“granular temperature”) that accounts for
the energy lost in inelastic collisions. Apart from the presence of an extra dis-
sipative term, this equation is very similar in form to the usual temperature
equation in hydrodynamics. It is shown how a lattice-kinetic model based on
the Bhatnagar-Gross-Krook (BGK) equation that was previously derived for a
miscible two-component fluid may be modified to model the continuum equa-
tions for granular flow. This is done by noting that the variable corresponding
to the concentration of one species follows an equation that is essentially
analogous to the granular temperature equation. A simulation of an unforced
granular fluid using the modified model reproduces the phenomenon of “cluster-
ing instability,” namely the spontaneous agglomeration of particles into dense
clusters, which occurs generically in all granular flows. The success of the
continuum theory in capturing the gross features of this basic phenomenon is
discussed. Some shear flow simulations are also presented.

KEY WORDS: Lattice gas methods; lattice-BGK methods; rapid granular
flows; kinetic theory; fluid mechanics.

1. INTRODUCTION

The numerical solution of partial differential equations using methods based
on the lattice-Bhatnagar-Gross-Krook (BGK'") models®”’ offers a num-
ber of advantages over conventional computational methods. These in-
clude stable, efficient, and highly parallelizable algorithms, and the ease
with which various rheological models and complex boundary conditions
can be incorporated. Some of these advantages, such as stability and

' Fluid Dynamics Research Center, James Forrestal Campus, Princeton, New Jersey 08544-
0710.

2 Permanent Address: Department of Fluid Mechanics and Heat Transfer. Faculty of
Engineering, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel.

87

0022-4715/95/10K0-0087307.50/0 - 1995 Plenum Publishing Corporation



parallelizability, are inherited from the lattice gas automata (LGA)
models'®’ first proposed for hydrodynamics in refs. 5 and 8, while others,
such as noise-free dynamics, Galilean invariance, and a velocity-independ-
ent pressure, form the main thrusts of the LBGK models. These models are
extremely versatile and can be applied to a variety of hydrodynamic
phenomena including reaction—diffusion, phase transitions,
magnetohydrodynamics, and multiphase flows.*®

It is shown in this paper how an LBGK model can easily be adapted
to solve continuum equations of motion for granular “fluids”. The notion
of a granular ‘fluid’ arises when a system of macroscopic grains, such as
sand or coal particles, are subject to such rapid deformation rates that the
contacts between individual grains do not endure and their motion is con-
tinuously randomized by frequent collisions. The behavior in this case is
analogous to that of a classical fluid, with the difference that the collisions
are inelastic. It is emphasized, however, that despite the analogy, granular
fluids are rheologically very different from classical fluids. A most signifi-
cant difference is the tendency of granular systems to form dense clusters
of particles of low internal kinetic energy within a dilute ambient of
energetic particles. These clusters have been observed in both externally
driven and undriven systems (i.e., systems that are left to decay from initial
energetic states). For example, anisotropic clusters are always found in
sheared systems whose collisions are very inelastic.®> %% Dense clusters
can also be created spontaneously in an unforced and initially uniform
system as its energy is dissipated in inelastic collisions.!!!0-2223.2D)
Clustering formation has also been observed in chute flows,** convec-
tion cells,''* and fluidized beds and thus appear to be a generic feature of
all granular flows.

Granular fluids have often been described constitutively on the basis of
the classical kinetic theory of gases, and many theories of granular
flow (24 12.18.15.16.20.19) phrodyce continuum equations which include one for
the kinetic energy density (“granular temperature”) that accounts for the
energy lost in inelastic collisions, in addition to the usual equations for the
mass and momentum densities. These equations are very similar to those
for elastic particles, differing only in the presence of an inelastic term in the
kinetic energy equation. The important issue of how well they capture the
basic phenomenology of granular flows has hitherto been addressed only in
an indirect way, for example, by comparing the theoretical constitutive
relation (i.e., the relationship between the stress and the strain rate) to data
obtained in molecular dynamics simulations'® or by performing stability
analyses of simple flow configurations. Although much has been learnt
from these comparisons and analyses, including the discovery that the
stresses in the flow deviate significantly from their theoretical values in the



presence of “inelastic microstructure” and that typical flow configurations
governed by the continuum equations are unstable with respect to density
fluctuations!'® 331 and typical length scales are deducible which charac-
terize the distance between clusters,!!® it is still largely unclear whether
many of the peculiar features of granular flows are captured at all by these
equations. The neglect of higher order correlations among the particles in
the derivation of the equations must already imply that they will not be
faithful to the actual dynamics in dense regimes—and large density
inhomogeneities are indeed commonplace in granular systems. Other
features peculiar to granular systems that have been observed include
anisotropic clustering, hysteresis effects, generalized phase transitions, non-
trivial transients, and oscillations.®? A direct numerical study of the con-
tinuum equations will therefore not only provide insights into the nature of
these effects, but also expose the specific aspects of the actual granular flow
not captured by the equations.

The rest of the paper is organized as follows: After a very brief review
of the basic LBGK model, we show how it can be modified to simulate the
dilute-limit form of the continuum equations for two-dimensional granular
flow derived by Jenkins and Richman!'” (henceforth refered to as the JR
equations). Then we compute some numerical solutions of these equations
for both a freely decaying system and a sheared system. The solutions are
compared to results obtained from the corresponding molecular dynamics
simulations. Finally, some comments on the ability of the JR equations to
capture the various phenomena in granular flows are given.

2. LBGK MODEL FOR GRANULAR FLOW

In the prototypical LBGK model, the following discrete analog of the
BGK equation,

No(X 4y, 1+ 1) = N (%, 1) = WL Ni(x, 1) = N5, (%, 1)] (1)

pi»
is solved on a regular lattice on which the set of particle densities N,,(x, 1)
are distributed. Here N, is the average density of particles with velocity ¢,;
(the indices p and i are explained below), 7 is the time, X is the position
vector of a node on the lattice, and w is the relaxation parameter, which
can be freely adjusted between 0 and 2. A generic choice for the equilibrium
population N7,(x, ) 1S
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Here « and # are indices for the Cartesian components of the particle
velocity (Greek letters shall henceforth denote the Cartesian components of
a vector). The hydrodynamic velocity and density are u, and p, respec-
tively. The index p is equal to the square of the modulus of the particle
velocity c,,, and has been used to distinguish between velocities having dif-
ferent moduli. The index i denotes the different velocities in the same speed
class p. The constant c, is proportional to a weighted average of the ¢,
and is identified as the speed of sound in the model. Finally, #, is a weight-
ing factor, which depends on p and which is adjusted to obtain isotropic
fourth-order tensor products of ¢,, and to ensure Galilean invariance of
the dynamics. The choice (2) for the equilibrium population, when used
together with (1), can be shown to lead to macrodynamic equations which,
when truncated after the second order in u,, are similar to the Navier—
Stokes equations.'?®’

An LBGK model for granular fluids can be adapted from a previously
derived model for miscible fluids®” by noting that in a two-species mixture
the equation of motion for the concentration of one species is analogous
to the equation for the granular temperature when a source and a sink of
concentration are added. The source and sink correspond to the viscous
heating and inelastic dissipation terms, respectively, in the latter equation,
the dilute-limit form of which in the JR theory for a system of rigid disks
of diameter a whose collisions are characterized by a constant restitution
coefficient & is given by

0pT)+0.(pu,T)

] T
=5,,(;(65T)—p7”8,,v5+§:7TrDiﬂ—p—”—(l—e')T' (3)

where T is the granular temperature and p is the local solid fraction,
ie, fraction of volume of fluid occupied by the particles, which, apart
for a multiplicative constant, is essentially the mass density. The thermal
diffusivity y and viscosity # are given by

z=4n=%aﬁ (4)

The dissipative term due to the inelasticity appears as the last term on the
r.hs of (3), and the viscous heating function is

Tr D2, = (8,05)% + (2,050,0,) — (3,0,)° )
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Following the development in ref. 29, we define the mass density p by
p(x, 1) =3 Ny(x, 1) (6)
p.i
and the hydrodynamic velocity u, by

pug=Y N,iCpe (7)
p.i
We introduce the quantity

P|=ZN1p1 (8)
p.i

which may be thought of as the mass density of a component species whose
particle density is N,,.. The dependence of N, Ny, u,, and p, on x and
t is implied for notational convenience and will be implied henceforth. The
variable corresponding to the granular temperature is defined as

T= (9)

o |®

where it is noted that, unlike the case of a true concentration variable, no
constraint will be placed on the magnitude of p, relative to p and thus T
may take all values larger than zero.

The evolution equation for N, is taken to be (1) with a forcing term
added to its r.h.s. to recover the dependence of the pressure on 7, ie,

Noi(x+cy, t+1)=N,(x, t)—wlN,i(x, t)—N;,.(x, 1]

t ~
+E£§[pcpiaaaT+(T_cf) Cpi:xozp] (10)

The various derivatives in the forcing term depend only on the local state
of the fluid at time ¢ and can be computed using appropriate finite-
difference approximations. The evolution equation for N, is

NipilXa+ Cpigs t+1)
=Nlpi(x:uI)_Wl[Nlpi(xa’t)-Nipi(xx’t)] \-;

P _52)?,2)

1 "
+t,,<§r7TrD2— "

(11)

where # has already been defined in (4), N5, =TN,, and a relaxation

parameter w, possibly different from y may be used. On the macroscopic



scale, the dynamics of V,,, and N, reproduce the dynamics of the granular
temperature equation and those of the momentum and continuity equa-
tions, respectively. Thus, by coupling Ny, to N, via u_, a convective-
diffusive effect on T is produced. The last two terms on the r.hs of (11)
correspond to a source and sink of temperature and, as in the case of the
forcing term in (10), may be computed using finite difference approxima-
tions. To obtain the requisite dependence of  and x on T [cf. (4)], the
values of w'and wq are coupled to the local value of T as follows:

cl/2 _ﬁ

r]=-2—<;—1>———8——aﬁ (12)
ci/2 _\/;

X=—2-<;‘-— >——2—'0'ﬁ (13)

Since w and w| are now regarded as functions of T, the only adjustable
external parameters of this LBGK model are & and ¢, where 0 <é< 1, and
o should be given in units of the lattice constant.

The macrodynamical equations for this model can be obtained by
means of a Chapman-Enskog procedure, the complete details of which
can be found in refs. 26 and 29. It can be shown finally that the macro-
dynamical equations for this model are

3,p + 0. pu,) =0 (14)
al(puz) +aﬂ(pu1uﬂ) = —au(pT) +aﬁ[77aﬂ( pux) +’761(puﬂ)] (15)

2T

I ,
0,(pT)+0,(pu,T) =0.(2p0, T) +31 Tr 15-—-"—,7—2 (16)

Except for the absence in (16) of the term pT0o,v, (expansion work done
by pressure), (12)-(16) correspond exactly to the JR equations. The key
points of the Chapman-Enskog procedure relevant to the derivation of
(14)-(16) are given in the appendix.

3. NUMERICAL RESULTS

The model described in the previous section is now used to compute
solutions of the JR equations for the following flow configurations: an
unforced granular gas in a periodic square domain whose temperature and
density are initially homogeneous, and a Couette flow in a square domain
which is bounded by two walls moving in opposite directions and which is
periodic in the streamwise direction. The model is implemented on a
64 x 64 D2QO9 lattice with one rest and eight moving particles (cf. ref. 27 for



explanation of the D2Q9 lattice structure). In both configurations, the
initial temperature field is uniform, while a 1% random perturbation is
added to the initial density field, whose average is uniform, in order to
trigger the nonlinear mechanism that leads to clustering. In the Couette
flow, a uniform shear is also superposed and a no-slip condition is applied
at the walls. This condition is maintained by specularly reflecting particles
off them and by constraining u, to the value of the wall velocity when
computing the equilibrium particle density N7, at nodes lining the walls.
The density and temperature fields for an unforced flow with é=0.6
and & = 0.05 (where the lattice spacing is unity) at time ¢ =100 are shown
in Figs. 1 and 2, respectively. These figures indicate that regions of higher
density, corresponding to clusters, have lower temperatures, while regions
of lower density have higher temperatures. The appearance of a charac-
teristic length scale ion the density field is also evident in its Fourier trans-
form, which shows an extremely well-defined peak at a single wavenumber.
Solutions for other values of & show that this length scale decreases with
increasing &, in conformity with a theory for cluster creation based on
the JR equations proposed in ref. 11. The fluctuations in the density and
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Fig. 1. Contour plot of the mass density field at ¢ = 300 for a two-dimensional unforced flow
governed by the JR equations with &= 0.6 and & = 0.05. The solution for the flow is computed
using the LBGK model as presented in the text. The vertical axis corresponds to the local
solid fraction (or dimensionless density) p in arbitrary units.



temperature fields can be as large as 20%of the corresponding average
values. However, the dynamics for ¢» 100 shows that the density field
saturates at the approximately same level of fluctuations as shown in Fig. 1.
In contrast, molecular dynamics simulations of large unforced systems with
the same value of & have shown that the density in the clusters could grow
to several times the average density.!'® It thus appears that the JR equa-
tions, while faithful to the dynamics of the flow in the initial cluster-form-
ing stage, do not capture its long-time dynamics. Moreover, the results for
Couette flow presented below indicate that the anisotropic structure of the
density inhomogeneities (i.e., the clusters) is not reproduced by these equa-
tions. This anisotropic structure has been observed in numerical simula-
tions of periodic shear flows of frictionless disks and spheres (“Lees—
Edwards” systems) and wall-bounded shear flows of both frictional and
frictionless disks.®? These simulations suggest that the structure of the
density field in the interior of the flow is determined by the rotating and
stretching effects of the shear in conjunction with a complex cluster—cluster
scattering mechanism (explained in ref. 32) and is independent of the
precise nature of the shearing boundary condition. The presence of rigid

Fig. 2. Contour plot of the corresponding granular temperature field for the same unforced
flow as shown in Fig. 1. The initial value of the granular temperature is set to unity.



moving walls additionally imposes a flow-scale inhomogeneity on the
smaller scale anisotropic structure of the clusters, but the anisotropy
remains nonetheless.

The density field for a Couette flow with & =0.6, 6 =0.05, and wall
velocity U= +0.1 (where the average particle speed ¢, is 1 /ﬁ) at t=100
is shown in Fig. 4. Again a characteristic length scale can be seen, but the
density inhomogeneities are isotropic, in contrast to the results of
molecular dynamics simulations®? (cf. Fig.3), which show that dense
clusters are created in the 45 deg direction, then are rotated by the shear
before being broken up by their mutual interactions, and thus persist in the
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Fig. 3. The particle configuration plot for a two-dimensional simple shear flow of rigid
inelastic disks whose restitution coefficient & is equal to 0.6. Superposed on the plot is a vector
plot of the velocity field. The flow as shown is in a statistically steady state and is computed
using a molecular dynamics program. The number of disks in the system is 2 x 10° and the
volume fraction of the disks is 0.05.



flow only at angles of inclination between 0 and 45 deg to the horizontal,
with the majority inclined at angles close to 45 deg.”®* It is also known that
the second tensor moment of the velocity fluctuations is anisotropic in a
shear flow®® (i.e., that the normal kinetic stresses are different), but the
JR theory assumes a vanishing normal stress difference. The solution for a
transient period near t=0 shows that the density fluctuations grow
slightly, but the solution after long times indicates that both the density
and temperature fluctuations decay and are eventually completely damped
out. The state that is reached finally is a steady uniform shear flow with no
inhomogeneities in either the density or the temperature field. Other solu-
tions that were computed for different parameter values and from more
strongly perturbed initial states behave in the same way after long times as
well. It is not clear at this point whether the absence of clustering in the
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Fig. 4. Contour plot of the density field at r=100 for a two-dimensional Couette flow
governed by the JR equations with é=0.6 and o =0.05. The horizontal direction is the
streamwise direction and the shade code for the plot is lighter shades for higher densities
and darker shades for lower densities. Notice that the density inhomogeneities do not appear
to lie in any preferred direction, in contrast to the molecular dynamics result shown in Fig. /.
which shows that the actual inhomogeneities are aligned typically at 45 deg from the horizontal.
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long-time dynamics of the flow is an inherent property of the JR equations
(ie., that their shear flow solution is stable to finite-amplitude perturba-
tions) or is due to an overdamping mechanism in the LBGK model itself.
The LBGK model may be unsuitable for highly compressible flows, since
the macrodynamical equations in the form shown in (14)—(16) are valid
only in the limit of small Knudsen and small Mach numbers. It remains to
be seen in future work whether the above findings can be borne out by
simulations of the JR equations using other methods.

4. CONCLUSION

In this paper, we have constructed an LBGK model for a set of con-
tinuum equations for dilute two-dimensional granular flow and shown that
they reproduce the phenomenon of clustering in unforced flows. However,
they fail to reproduce the anisotropic cluster structures that are observed
in molecular dynamics simulations of sheat flows, and their long-time solu-
tions for these flows are homogeneous, also in contrast to the molecular
dynamics results. The choice of the LBGK method, as opposed to more
conventional methods such as finite-difference schemes, is made mainly on
the basis of its algorithmic simplicity and adaptability to different rheologi-
cal models, and also the ease with which the transport coefficients can be
tuned or coupled to the field variables.

APPENDIX. CHAPMAN-ENSKOG EXPANSION OF THE LBGK
EQUATION

We first derive the macrodynamical equations for a miscible multi-
component fluid modeled by the LBGK equation. Then we will show that
by adding a suitable forcing term to (1) we may obtain an equation
governing the dynamics of the concentration variable which is similar in
form to the equation for the granular temperature. We first extend the
definitions of the mass and momentum densities for a simple fluid to a
mixture of fluids."’ Let N,,; denote the average population of particles of
the rth species with velocity Cpia- The total mass density p is given by

p= Z N}'pi(xo :) (A])

ropi

while the mass density p, of the rth species is

pr=ZNrpi (Az)
Pl



Note that the sum is not taken over r in (A2). Also, the space and time
dependence of N, in (A2) is implied, and will be implied henceforth in the
analysis. The velocity u, in a mixture of fluids is defined as the total
momentum of unit mass of fluid. That is, it is defined via the relation

pu, = Z Nrpicpia. (A3)

ropi

The additional hydrodynamic variables relevant to a mixture are those that
describe the local composition of the fluid. These are the concentration c,
of the rth species and are defined as

e, =2 (A4)
p

In a mixture consisting of nonreacting species, the local concentration of
each species changes through the mechanical mixing of the fluid and through
mutual diffusion. From the definition (20), the ¢, satisfy

Te =1 (AS)

Hence for a mixture having a total of R species, there will be (R—1)
independent equations of motion for the c,.
The generalization of (1) to a mixture of fluids is taken to be

Nl Xe + Cpins 1+ 1)

= Nopi(X0s 1) =W, [Nppi(Xs, 1) = N7 (X5, 1)] (A6)

rpi

where possibly different relaxation parameters w, may be assigned to each
species. The local equilibrium population Nj, can be inferred from a
generalization of the H-theorem for a mixture of fluids and is given by

N:/,,»;“C,N;i (A7)

with N¢, given by (2). Equation (A7) may be taken to imply that the
dynamics are attracted to separate equilibrium states corresponding to
each component, but which are coupled via the velocity u,.

The equations governing the large-scale dynamics of (A6), in which
the local equilibrium distribution N;,, is taken to be given by (A7), will
now be derived using a Chapman-Enskog expansion. Since similar expan-
sions for the LGA and LBE have been used before (see, for example, refs.



6 and 7), we will only outline here the steps necessary to obtain expressions
for the transport coefficients. We assume a weak disequilibrium expansion

N .= N¢ +8N(”+82N(,§3+"' (A8)

rpi rpi rpi

where ¢ is the appropriate Knudsen number for the flow. The space and
time derivatives are expressed in terms of multiple-scale variables as

0, =0, (A9)
8,=¢d, +¢%,, (A10)

Since mass and momentum are conserved, it follows from (A6) and (A8)
that

Z W,N(,ﬁ.=0, j>0 (All)
ropi
Y w.NUe,,=0, j>0 (A12)

ropi

Also implicit in the lattice-BGK model is that the nonequilibium popula-
tions NV}, j> 0, satisfy the constraints

rpi?
Y NA=0, >0 (A13)
rop.i
Y NPc,e=0, >0 (A14)
ropoi
Y NDL=0, >0 (A15)
p.i

where (A15) expresses the conservation of the mass density of each species.
However, ¥, ,NY)c,, does not vanish in general, since there can be
transfer of momentum from the particles of one species to particles of a
different species.

By expanding N,, in a Taylor series about x, and t, and using (A9)
and (A10), we obtain first- and second-order equations in & we then take

the zeroth and first moments of ¢, in these equations to obtain
0,,p+0.(pu,) =0 (A16)
0, (puy)+05J,5=0 (A17)
where it can be shown by using the fact that
by

Z ’[7 z C,,,-zc/,iﬁcl,,-?c,,,»,; = C?(éaﬁé.{.é + 5(;/)5}.: -+ d;.'ﬂé:é) (Al 8)

P i=1



that

Japg=CpOog+ pu,uyg (A19)
Using (All), (A12), (A16), and (A17), we also obtain

.,p=0 (A20)

0 upuy+0, ¥ (1 J%) N cop=0 (A21)
rp.i

Equation (A20) implies that there is no diffusion of the total mass density,

while (A21) accounts for the effect of viscous momentum fluxes,
Following the development of the Chapman-Enskog expansion, N‘,",,?

will now be expressed in terms of derivatives of the macroscopic variables.

Here we will also need equations corresponding to (A16) and (A17) in

which the index r is not summed over. These are

0,p,+0.(p,u,)=0 (A22)

al|(prua) + Cfazpr + aﬂ(pruzuﬁ) = _wrZ Ni,];)cpi:x (A23)
i

Note that 3, ,Ni)c,, corresponds to the nonequilibrium mass flux of

species r and does not vanish in general. To O(u) this flux is given by

1 )
YN e, = = [0u(poa) + c30.p,1 + O(w) (A24)

poi

It is easy to show using (A17), (A19), and the relation p,=pe, that
0, (pc,u,)=—c*c,8,p + O(u*). Hence

4
(n =
Z Nrpi Cpi: - w
p.i

r

2
k]

pd.c,+ O(u?) (A25)

Using (A7), (A22), and (A23), we obtain finally

! oCo .
vo= -2 (g, ) o) +mptc,|  (AX)

It is easy to check that the conditions (A13)~(A15) are satisfied by N‘,,‘,,?.
Substituting (A26) into (A21), we obtain finally

.2 2 S
9, pus) — 0y {52— (; - 1> [0.0pup) +04pu) ]+ =0  (A27)



where we have defined the “equivalent” relaxation parameter w via the
relation

—=y- (A28)

Equations (A16), (A17), (A20), and (A27), ie. the dynamical equations
from the two separated time scales | /e and 1/¢2, will now be reconstituted
to obtain the macrodynamical equations for the model. The equation of
continuity is obtained from (A16) and (A20) by multiplying the former by
¢ and the latter by ¢? and then adding the two equations; and the Navier—
Stokes equation is obtained from (A17) and (A27) in the same manner. We
obtain

0,p+0q(pu,) =0 (A29)
O pus) +0p( puup) = —c20,p + 5[ v35( pug) + (B, pus)]  (A30)

where the coefficients of shear viscosity v and bulk viscosity { are given by

c2/2

We will now obtain the equation of motion for the concentration C,.
The equation corresponding to (A20) in which indices p and / are not
summed over is

W,

algpr—<_2——]>a:x (ZNill;)Cpta):O (A32)
p. i

which shows that there in general the species mass densities change on the
diffusive time scale. Substituting (A25) into (A32), we obtain, correct to
O(u), the convective-diffusive equations for the mass density of each species

0 pe,) +0,(pe,u,) =0,(D, pd,c,) (A33)

where the diffusivity is given by
2
D,=—2i<3-l> (A34)

For a mixture of two species with pPr1=p, and w,=w,, we find that
Dy=D,=v. This is not surprising, since the concentration variable is
analogous to the temperature in the BGK approximation and the Prandtl
number (ratio of viscosity to temperature diffusivity) of a gas that satisfies



the BGK equation is unity. Also, notice that since 3, ; N c,, does not
vanish in general, (Al2) implies that all but one of the w, are freely
adjustable. Thus in practice one prescribes values for the equivalent relaxa-
tion parameter w and w,, r=1, 2,.., R—1 (where R is the total number of
species), and uses Eq.(A6) for N,,, r=1,2,., R—1, together with an
additional equation for the total population N,=3¥, , N, [which is
exactly similar in form to (1) with the corresponding N, given by (2)] to
compute the evolution of the dynamics.

Equations (12)—(16) are obtained as a straightforward extension of the

above model. We consider a two-component fluid and define

il
p

T=c, (A35)

The continuity equation (14) is derived in exactly the same way as (A29).
It is easy to see that the last term on the r.h.s. of (10), when summed over
p, produces a term that cancels the pressure term in (A29) and replaces it
with —d,(pT). The last term on the r.hs. of (11), when summed over p,
produces an equation for p, given by

w 1 « PA1I =T
0,p,—| =—1 e —nTrD*————|=0 (A36
lgpr <2 >aa <§:‘ Nrp( cp11>+<2’7 r n ) ( )

from which (16) follows with & equal to D, as given by (A34).
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