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One of the possible phases of a sheared system of inelastically colliding rigid smooth disks is on¢
in which relatively dense strips aligned at 45° to the streamwise direction are interspersed among

similarly aligned dilute strips. The dense strips may

have secondary microstructures in the form of

elongaed clusters. The laner are formed by an instability, following which they are convected,
stretched, and rotated by the shear field. This process causes cluster~cluster collisions, a result of
which is the partial destruction of the colliding clusters, followed by the cmergence of new clusters.
In addition, il is demonstrated that clustenng dynamics can be responsible for hysteresis and
multistability in granular systems. The studies presented in this paper involve molecular dynamics

simulations complemented by theoretical analysis.

(S1070-6631(97)00203-1]

I. INTRODUCTION

A variety of rheological properties of granular systems
in various fiow regimes ranging from the quasistatc 1o the
rapid regimes has been discovered in recent years. Many of
them are reviewed e.g., in Refs. | and 2. Among these prop-
erties we wish to mention normal stress differences,™ 1/f
noise, nomlipear waves, coavection rolls,' inelastic
collapse, > seasitivity to boundary conditions, segregation.®
layering, hesping.” and the formation of extended plugs.
Studies of the above phenomena, as well as of other effects
that are found in granular systems, reveal that microstruc-
tures play an important dypamical role in such systems. The
instability of granular systems to the creation of dense clus-
ters or strips of various densities or compositions (in poly-
disperse systems) is by now well established. ‘Pure’ granular
systems, i.., collections of particles whose interactions are
of dissipative nature, the effects of the ambient fiuid being
negligible, comprise just a small subset of the systems in
which macroscopic particles are involved. In other particu-
late systems of interest, oae observes significant micTostruc-
wures as well. Examples include bidisperse particles sedi-
menting in a viscous fuid,'"'? low-Reynolds-number
sheared suspensions,” fluidized beds,' and more. The clus-
tering processes in these suspensions bear a0 interesting, and
perhaps far from superficial, similarity to those in granular
flows: &nd the insights gained from the study of the latter
flows (which are more accessible to numerical simulation)
may be useful for the study of the former. In 2 sedimenting
bidisperse suspension, for cxample, particles of the samc
species iend to coalesce In low-shear and high-velocity ver-
tical streamns that are surrounded by highly sheared **lubn-
cation™ lavers of interstitiel fluid.!' Thesc streams of pas-
ticics separatc into smaller sweams as the relative velocity
between the stream and the lubrication layer increases. This
is reminiscent of the clustering process in granular flows. cf.
Refs. 15 and 16. One of the results of tae studies of cluster-
ing is the the identification of a length scale given by

Phys. Fluids 9 (3}, March 1887

1070-6631/97/9(3)/1/14/510,C0

© 1997 American Institute of Physics.

I
ey M

N

L.~

where ! is the mean free path for the corresponding bomo-
gencous flow and € is the coefficient of pormal restwtion.
This length scale has been shown o represent the typical
intercluster distance.'>!® Thus, when the linear size of & sys-
tem is smaller than L it cannot accommodate clusters but it
can still be inbormogeneous; when it is larger than L, clus-
tering will occur. The relevance of the above clustering -
mechanism to sheared systems (the work cited in Ref. 16
above refers 1o unforced systems) is one of the issues taken
up in this work.

The rest of this paper is organized as follows: Section i
provides a brief description of the systems we have studied
and a detailed account cf the cluster—cluster interaction
rechanism. Ia Sec. II the Fourier spectra of the raacrofields
ere cxamined and the scales and angles charecteriang the
systems under study are ideatified In Sec. TV we present a
study of the stbility (both linear and nontinesr) of granular
shear fiows; in addition we demonsirste the existence of mul-
tiple steady states for 3 flow with a given set of exwemal
parameters and we relate this phenomenon to the clustering
mechanism. Section V offers a brief summary of the findings
of this work.

Il. MICROSTRUCTURAL FEATURES
A. The model

The system considered here!” comsists of N identical
smooth rigid disks of unit mass and diameter & 18 4 reclan-
gular enclosure of size L XL, . This enclosure is periodi:
cally exiended in both the x and y dircctions. Lees~Edwards
poundary conditions,'® i.c., periodic boundary conditions n
the local Lagrangian frame (corresponding 10 the mean ve-
locity profilc) for shear flow are implemeated. These bouad-
ary conditions correspond to the system being sheared by it
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boundaries. These conditions were originaily employed 1©
study transport propertics of simple fluids, and have aiso
been used in simuletions of granular syseems.*'%~*' They
lead to a state of simple shear without having to formulate a
wall boundury condition. An algorithmic definition of these
boundary conditions, useful for implementation on the com-
puter, can be found in Refs. 4, 17, and 21.

The ouly aliowed interactions in the sysiem are colli-
sions of pairs of disks. The collisions occur either between
wo disks lying within the enclosure or between a disk in the
enclosure and another disk in a periodic image of the enclo-
sure. The velocity of esch disk is copstant between colli-
sions. The collision process is characterized by a constant
coefficient of normal restitution, £, With 0<eé<1, which,
when combined with the conservation of linear momentwm,
determines the outcome of the collision.

The initial coudition of the simulation is similar to that
used in Refs. 17 and 21 and it corresponds to the sheared
configuration of an elastic hard-disk gas with a mean lincar
velocity profile. As shown below, the mean velocity profile
persists throughout the simulation in spite of the fact that the
system becomes highly inhomogeneous—this is 2 conse-
quence of using the Less—Edwards boundary condition. The
qumerical method used for the simulation is the *‘event-
driven” method? (modified to incorporate the Lees-
Edwards boundary condition—<t. Ref. 17 and references
therein).

B. Microstructures

The parameters characterizing the system arce e.N,L,,
and L, mentioned sbove, ¥, the mean area (volume) fracuon
of the particles and £U/2, the (effective) velocities of the
upper and lower boundaries of the enclosure, respectively. In
rmost of the paper we consider two specific sheared systerus,
which we refer to as System I and System II. The parameters
of System’ I are given by: =09, N=20000, U=100,
L,=L,=1. and 7=0.05: the parameters of System II are
given by: &=0.6, N=200000, U=100, L,=L,=1, and
7=0.05. These pararneters determine the particle diameter &
and mean frse path /., which are given, for System I, by
o=000178 and {==1/71, and for System IO, by
o=0.000 564 and !==1/226 (the mean free path in 2 two-
dimensional system of disks is I=L,LJ2No). Both systems
are dilute but System I is nearly elasuc while System I is
highly inelastic, The reason the number of particles in Sys-
vern 1 is ouch smaller than that in Systern IT is that we wish
to demonstrate that the bifurcation between quasthomoge-
neous and highly inhomogeneous states depends on the ratio
of the typical intercluster distance, L, given by Eq. (1), to
the linear size of the system. The parameters for System Iare
chosen so that the value of L, for this system is much larger
than that corresponding to System K. The propetties of a
quasihomogencous system (which is also a “‘small’’ system
since the condition of the system size being smaller than L,
is equivalent, in the case of a fixed system (area) volume, to
the nurber of particles in the system being smaller than a
given threshold} arc qualitatively different from those of an
inhomogeneous (or “‘large’) systerm. In pasticular, clusters
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FIG. |. The particle configuration for System 1. The porion of the flow
domain shown here corresponds o 2 square regios in te conler of Systen
1 whose aea is 1/a the area of Syster I. The trae here comesponds © 200
collisions per perticls {ollowing the initu! coadition.

are created only in large systems but not in small sysiems
and the values of the average stresses in small systems are_
closer to the predictions of kinetic theories of graoular fidws
than those in large systems. s ik
A plot of the particle configuration of (part of) SM z
at a tme comesponding to the lapse of 200 collisions per
particle following the initial condition is shown in :g"g kS
The full flow domain is not shown in Fig. 1 becauss”scatter
plots sysiems consisting of 20 000 or more particles #0d T
be iradequately resoived when reproduced in m_e'_'jg‘:;r;ug].’j
The portion of the flow domain shown n Fig. | anﬁ's.
to 8 square region in the center of System { whose area 18 174
the arca of System I The values of the average ﬁu‘

temperature and other statistical characterizations of i sys-
tern are stationary at this time. The density contous Pl (of
the whole systern), Fig. 2, shows that weak ﬁow-y:% fibo-
mogeneities in the form of thick strips sligned g e
extensiongl axis of the shear and spanning the system E:lurt: n&
the flow. The arrangement of these strips is such tHAE the
denser strips are interspersed among less dense stips Of 8
Gimilar size and orientation. The internal structure of (bese.
strips, though still weakly inhomogenecus, does not Contan
the discernible dense clusters thal exist in highly insldstic
sheared systems. The spatial structure of the Kinetic and col-
lisional pressure fields (not depicted here) is similar to that of
the density field, that is, it consists of diagonal and ‘weakly
inhomogeneous strips that span the linear dimension of &e
flow. S
A plot of the particle configuradon of System iaa
time corresponding 1o the lapse of 100 coilisions per particle
following the initial condition is shown in Fig. 3. The portion
of the flow domain shown in Fig. 3 corresponds 10 8 square
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FIG. 2. The density field for System 1 21 s time comresponding to 200
collisions per paticle following the mitial candition. The shade code is!
lighter grey for higher densities and darkes for lower deosities with the
lightest shade comresponding © » value cqual to 80% of e full rage of
deasitics observed in the flow and the darkest stade 10 20% of this range.
The intcroedists shades are equelly spaced. The density ranges from 70% 0
130% of its average velue.

region in the center of Sysem I whose area is 1/16 the area
of System IL It is evident that dense and anisotropic local
agglomerations of particles oecur throughout the flow field in
the form of elongated clusters. Most clusters are oriented at
approximately 45° with respect 10 the streamwise direction
(i.e., in the extensional direction of the flow) aad some clus-
ters are oriented at smeller angles with respect to the stream-

F10. 3. Toe puticle configuration for Systm I The poniion of the flow
doraaln shown bere cormesponds 1o a IQUErs TROD ia the ceoter of Sysiem
I whose wrez is 1/16 the area of Syzwe=m I The tme bae corresponds o
100 collisions per particic following the mital condition.
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wise direction. A stripwise organization of the clusters in
System II can sull be discerncd. though the strips in this case
are “‘pinched’” and ‘‘bent” in sevcral places along their
lengths and do rarely span the system, in contrast to those
found in System L. Just as the dense strips in System Iare
interspersed among dilute strips of a similar orientation and
size, the clusters in System I are also interspersed among
relatively dilute regions of a similar shape, orientation, and
size. The temperature is lower in the interior of the clusters
than in the ambient dilute region. Developing clusters are
also characterized by lower pressure, though in **mature’’
clusters (which do not grow any further), the pressure is
approximatcly equal to that in the ambicat. While the clus-
ters are relatively dense. the typical arca fraction inside a
cluster (in our simulations) is about twice the average area
fraction (0.05 in our simulations). Thus the clusters, in the
case considered here, are relatively dilute as well. This is a
result of the coutinual energy replenishment (and conse-
quently thermalization) by viscous heating due to the shear
field. Still, in denscr systems (not described here) some clus-

ters may reach maximal packing, probably by the collapse
effect®

C. Cluster—cluster interaction

The stripwise microstructure described in Sec. I B has
been observed in previous computer simulations;*' the oriea-
tation of the strips has been theorized upon in Refs. 23=23.
These studies, which are based on equations derived in_Refs.
26 and 27, have discovered (through linear stability,analys: )
modes that grow transieatly but decay 2t asymptcticallynl‘glig:
times. They have found that the leading instability, come:
sponds to a wave vector whose direction is at 457 vath re-
spect to the streamwise direction. Such a wave vector, came:
sponds to strucmes which lie at 135° to the streamwise
direction in contrast with numerical findings. The resolution
of this problem is presented i Sec. IV. —

As mentioned above, System II possesses 2 clusteTing
instability which occurs within the oblique dense layers, The-
crerging clusters are then distorted, convected and fotated
by the flow. Since they are identifizble on relatively, long,
time scales (with respect to the inverse shear rats) and.one
can actelly follow the motion of single clusters in.a
“movie” depicting tneir dynamics, ey can be considered
to be coherent (micro)structures. Since the ternperanie in-
side the clusters is relatively low, the particles in (he clusters
follow (practically horizontal) trajectories that are youghly
dictated by the wean flow; as a result the clusters appear 10
rotate and be stretched s if they were deformable solid bod-
ies. Moreover, they scater into each other as they are being
convected. thus producing a very complex dynamics that io-
volves rapid dispersion and reorganization of mass in the
fow. Nevertheless, the suipwise clusteriog microstruciure
persists. We proposs that it is by means of the cluster—cluster
interactions. hand-in-hand with the noulincar clustering pro-
cess, that this type of oblique microstructure is maintained in
the flow.

Our numerical results reveal that the velogity ficids in
both System I and System 0O correspond o an extremely
uniform lincar skear field at zil times. This is the case despite
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FIG. 4. Strcamwisc-averaged flow properties for System I: (A) the velocity componeat Vv, : (B) the velocity componeat v, (C) density o (D) tcmperstwre
T. Notice that all profiles are essentiaily uniform, the relative fluctuations beiog very small,

the rapid temporal variations in the spatial structures of both
systems. Some other streamwise-averaged properties for
Systemn I and System I1. such as their temperature and num-
ber density profiles, are presented in Figs. 4 and 5. These
profiles show variations with typifiable length scales on an
essentially flat background.

It is convenient to express the two-dimensional uniform
shear field, V(x,y), with shear raee 7y 2s Vix,y)=(v/
Dty x)+(y,—x)). The velocity field corresponding 10 the
first term in the square brackets is aa irrotational stretching
field which tends to compress a flow structure along the 135°
direction and stretch it along the 45° direction. The velocity
field corresponding 1o the second term in the square brackets
represents a clockwise rotation of the system. Thus, as men-
tioned, all structures in the shear flow are permanently and
simultanecusly compressed, streiched and rotated by the
flow. One may then presume that at any instant of time there
should be clusters aligned at all possible angles of inclina-
tion. Indeed the clusters start off at approxirnately 45° and
are rotated in the clockwise direction. Since the longer the
cluster is rotated, the more likely it is to collide with adjacent
clusters and be dispersed by the collision. 2 distribution of
angles of inclination for the clusters indeed emerges. How-
cver. this distribution is strongly weighted towards angles
close 10 45° and it tails off as the angle becomes smaller. The
power spectrurn of the density, presented in Sec. ITI corrobo-
cates this observation. An explanation of this fact is proposed
below.

The practcally fixed orietation of the clusters can be
understood by closely following their dynamics. The kine-
matics of cluster interaction can be described with the help of
a sequence of closely cropped cootour plots that show the
density field around two neighboring clusters at successive
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instants of time. Figure 6 depicts a sequence of contour plots
of the density field in a small window that is just large
enough to show a few clusters lying within two adjsccal
dense strips. These plots are produced from snapshots of
System II at successive instants of time which are '
by time intervals that correspoads W the lapse, on the aver-
age, of 0.25 collisions per particle in the system (i, a total
of N/4 collisions, where N is the number of particles in the
systern, have occurred between one plot and the next). Figure
6(A) shows two clusters that were oriented approximately
along the extensional axis of the shear with the cluster la-
beled 4 in the figure lying above and to the left of the cluster
labeled B. In Fig. 6(B), which shows the density field 0.25
collisions per particle later, both clusters A and B have ro-
tated slightly away from the extensi axis and they are
closer to each other. They have also been slightly stretched
along the extensional axis by the flow. The fact that the
clusters appear to be *‘drawn’ closer to each other is not a
dynarnical effect, such as an cffective interaction between
the clusters: it is merely & kinematic effect that results en-
tirely from convection. This conclusion follows from the fact
that the motion of each cluster as a whole is found to closely
match the motion dictated by the average velocity field (and,
as mentioned, the temperature inside the clusters is reladvely
Tow).

Since the velocity field is linear, the velocity profile seen
from 2 local frame of reference moving at the local value of
the (mean) velocity is identical to the global profile. It can
thus be decomposed in a similar way into 2 rotational part
and a stretching/compressing part. Clusters viewed in the
local frame appear to rotate about the origin of the frame,
and two clusters that are close enough together agd whose
geometric centers lie approximately along the same horizon-

M-L. Tan and |. Goldhirsch
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FIG. 5. Streamwise-sveraged flow properties for System H: (A) V, 1 (B) V.

the relative fluctuations being very small,

tal line must collide with each other as they are being yo-
tated. This is roughly the simation with the two clusters
shown in Fig. 6. The coilision that occurs between them is
depicted in Figs. 6(C) and 6(D): in the former figure, the
bottom half of cluster B is seen to have begun to scatter into
cluster A, creating z2n expanded region of dispersed particles
(though still of moderately high density). Then, in the latter
figure, a ‘‘mass atractor”" (.-, a clustering center), labeled
M. forms out of this region while the top half of cluswr B
breaks away from what is now the amalgamation of its lower
half with cluster A. This amalgamation is then compressed in
the 135° direction and stretched in 45° direction by the shear,
causing a new cluster elongated along the lener direction to
take shape. This cluster becomes more fully formed in Fig.
6(E) and is labeled C. It can be also be seen in Fig. 6(E) that
the top half of cluster C is about to scatter into the bottom
half of cluster B' [which is the broken-off descendant of
cluster B in Fig. 6(C)]. The outcome of this scattering is
again a dilated region of dispersed particles as shown in Fig.
6(F), and the cycle of formation of a new cluster through the
appearance of a mass atiractor in this region then repeats.
The fact that the scattering produces 2 dilated region is evi-
dently due to the fact that part of the kinetic encrgy of the
colliding clusters is converted into thermal energy and, as 2
result, the temperature and pressure in the region are raiscd
and causc a dispersion of the particles in that region.

The paradigm of this process of cluster convection and
cluster scattering followed by dilation and mass reorganiza-
tion applics throughout the sysiem. Hence, even though the
spatial orientations of the clusters in the system appear to
remain mostly along the extensional axis, what aceally hap-
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pens is that new clusters are being continually created in this
direction. The structure of the other field variables, such as
the temperature, kinetic and collisiona! stress teasors, follow
this time-dependent paradigm: A local orgasized mbomoge- -
neity is first created along the extensional axis and is con-
vected and then dispersed or modified by cluster interactions
before 2 new inhomogeneity is reorgamized in its place.
Since 2 region of average density in the flow is always (non-
linearly) unstable with respect 1o the creation of clusters, the
mass reorganization stage that follows the dilation stage is
due to the same nonlinear clustering mechanism that is re-
sponsible for the creation of diagonally aligned clusters from
the initial uniform density field. In summary, the stripwise
clustering microstructure in simple granular shear fows is
stabilized through the combined effect of a nonlinear cluster-
ing instability, cluster convection and a complex process of
cluster interaction and mass reorganization.

lil. SPECTRAL ANALYSIS

This section is devoted to the presentation of the Founer
spectra of the density and momentum fields of System I and
System X1 as well as other shearcd systems characterized by
different cxternal parameters. One of the resuits presented
below is that the typical length scale in the density ficlds of
systems with different valucs of the cocfficient of restitution.
¢, is approximately given by relationship (1).

The Fourier transforms of the mass and momentum den-
sities are.
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N
)= 5= 3, exslikr)

and

N +
- —— m -
Bk =5— :2,, v; exp(ik-T,),

respectively, where 1, . is the position vector of particle j in
the system. The allowed values of the wave vectors are de-
termined by the boundary conditions. In our case the (Lees-
Edwards) boundary conditions are periodic in the Lagrangian
frame for shear flow—i.e., they are periodic only after a local
Galilean transformation that depends on the local mean ve-
locity has been applied to the coordinate system. The (urme
dependent) allowed wave veclors are obtained as follows.
Let a, and 8, be the **basis vectors™ for the laftice consistng
of the system and its periodic images. Let p be an integer
such that O<L yt=pL,<L;. and definpe [w]=
-pL/L, . Then we have 0<[ yt]<LJL, and the basis vec-
tors can be written as 8,=(L, 0) and a,=([#]L, .L,). The
basis vectors for the corresponding reciprocal lattice are:

_[211- 211'[7:]} 27\
S 9 B
The time dependence of this vectors does ot change the
(standard) interpretation of specua, it just affects the-distri-
bution of the allowed (discrete) wave vector values at each
instant. ekt W, Ao

Figure 7 shows a contour plot of the power spectrum of
the density field for System II. The contours in Fig. 7 corre-
spond to equally spaced values bctween the minimal and
maximal values of the spectrum. It is evident that the domi-
nant wave vectors are aligned at angles between 90° and
135° with respect 1o the positive &, axis. This impiics that

d k2=(0

Phys. Fluids, Vel, 9. No, 3, March 1397
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FIG. §. Conwur plot of the power spectum of the density feld of System I
The coawur lincs corresponds 0 equaliy spaced values of the spectrom from
20% to 80% of the full rage observed.

spatial swructures in the density field are aligned at angles
between 0° and 45°, in agreement with tie direction of the
structures observed in Fig. 3. The cerresponding spectium
for System I is shown in Fig. 8. The dominant wave vectors
are again aligned between 90° and 135°, though thelr mag- °
nitudes are smaller than those of the dominant wave vectors
in System XL, indicating that the spatial scales in the density
field in System I are larger. Since the mean free paths in the
two systems are different, we cannot directly compare their
spatial scales. However, the comparison can be made if these
scales are expressed in units of the mean free paths of the
corresponding systems; if this is done. we find that the scales
in System I are sdll larger than those in Sysem I

The power spectrum, P(k), of the momeotum field is
presented separately for the x and the y components of the
Geld. The part of the momentum field due to the linear shear
profile does not affect the power spectrum except al points
on the &, axis. Let the macroscopic momenmum field, p(r). be
writien as p(r)=p(r)yyX+p’'(r), where X is the unit vector
along the x axis and p’ denotes the deviation of the field
from the value that corresponds to the lincar velocity profile
alone. It is casy to check that the spectrum of pyyx with
constant density (p) is nonzero oaly for k=0 (.., on the k,
axis). Density variations affect this conclusion in a minor
way (see below). If instead of computing the Fourier trans-
form of p(r) we compute the Fourier transform of p' (D). i.c..
of §'(K)=m=N_ ,(v;— yy,;X)explik-r)) whare y, is the y co-
ordinate of the jth particle in the sysiem, we eliminate most
of the power at the points on the k, axis that is due to the
average profile. However, this power is not completely
climinated. sincc & global trend (i.c. a vanation wiose
length scale is of the order of the linear dimension of the

M-L. Tan and [. Goldhirsch 7
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FIG. 9. The power spectrum P, of the x ¢omponcat of the momentum feld
of System I. The coatour lings correspoads to equally spaced valucs of the
spectrum from 20% to 80% of the full range observed.

system) exists in p’ due to the fact that the total momentum
of the system fluctuates around zero (2 consequence of the
boundary conditions). This fluctuation appears to be thermal
in nature and its magnimde is O(N "~ '?) umes the magnitude
of the wtal momeatum in, say, the top half (i.e., 0<y<L,) of
the system. As a result of this fluctuation, the magnitude of
the total momentum in the top balf of the system i3 different
from that of the total momenwm in the bottom half, How-
ever, the values of B'(k) at points on the k, axis are still
about one order of magnitude larger than the power of the
more interesting off-axis structures in the specuum. Hence
we have chosen 10 ignore the power on the k, axis in the
p , spectrum. Although a global wend may also exist in
p y , its magnitude i very small compared to the trend in
p . (since the mean y compouent of the mormentum is zero)
and it does not pose 2 problem to the interpretation of the
spectrum. Since we have ignored the power on the , axis in
the p, specttum, we have also ignored possible honzonml
layv:nng structures in the velocity field. However, we have
checked that the power at large values of k, on the k, axis (at
which the power due to the global rend in p; is negligibic)
is small, and thus there is no horizontal layering in the ve-
locity field (as can be checked directly by studying the par-
ucle scarer plot).

A contour plot of the spectrum P_ of the momentum
field for System I is shown in Fig. 9; the comesponding
spectrum for System IT are shown in Fig. 10. The P, spectra
for both systems have the same structure as the comrespond-
ing P, spectta. These figures show that most of the peaks in
P, lie berween 90° and 135° with respect to the positive &,
direction, with the stronger peaks lying at angles closer to
135°, Thus, the structure of the x component of the momen-
wm field, much like the stucture of the density field, con-
sists of differenuated strips aligned mosty along the exten-
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FI1G. 10. The powér spectrum P, of the x componznt of the momeamm field
of Sysiem II. The contcur lines corresponds (0 equally spaced vaives of the
spectrum from 20% 10 0% of the full moge obscrved.

sional axis of the shear. This structure can be understood as
follows: Consider the x component of the mean velocity
along a line parallel to the x axis which cuts the alternatingly
dense and dilute strips. This velocity is in general not equal
o the value that is obtained by interpolating between: the
values of the velocities at the top and bottom bounda:ws ‘but
it does fluctuate around the interpolated vatue. The. dev:a-'
tions from the interpolated vaiue are smallest at points that
correspond to the center of each dense or dilute strip and are
correspondingly largest at the edges of each strip. This varia-
tion carresponds to the alternation of regions into which par-
ticles are converging. ie., the denser strips, with regions
from which particles are diverging, ie., the more dilute
strips, with the coaverging or diverging flows being strongest
at the edges but “*stagnant™ at the center of each strip. A
similar argument holds for the y component of the momen-
tum field. The above results also hold for systems having
aspect ratios different from unity, in particular the orientation
of the strips is the same. Thus the structure deseribed above
is of dynamical origin and not due 1o geometry.

The typical intercluster separation L , . ¢f. Eq. (1), which
was originally predicted for (dilute) free granular systems, is
valid for sheared systems as well. It exhibits 2n area fraction
dependence. as shown below. Figure 11 presents the results
of a series of simulations with different values of ¢ and two
values of the homogeneous solid fraction, denoted by ¥,
equal to 0.05 and 0.10, the other parameters being held fixed.
It is observed that for 2 given value of ¥, which is equivaleat
to & given valuc of I, the dominant scale 25 determined from
the spectral analysis varies linearly with L, (the measured
value of this scale {s denoted by L,). Figure l? presents plots
the datwx from two-dimensional simuletions of simple shear
flows obtained by Hopkins and Louge.?’ in which their data
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FIG. 11. The dominant leagth scale Ly/L (where L is the lincar dimension
of the system) in the density field as 2 function of L7yl —¢ /o at fixed
520,05 (corresponding 1o A) and v=0.1 (¢correspondiag 0 Q). The pumber
of pardcles in the syst=m is 20 000.

is rescaled in terms of L/A and L¥V1 —¢ ‘/d as ordinate and
abscissa respectively (where L is the linear dimension of the
system), d is the particle diameter (notation used in Ref. 21)
and \ is the dominant scale obtzined by Fourier analyzing
the density field (again notation used in Ref. 21). While
somewhat more noisy (dué to a smaller number of particles
in their simulation), the Hopkins and Louge data confirms
the above properties of the typical length scale. The slopes of
the graphs of L/Lg @Ligl'—'?‘lo as a function of the

o} 19 20 30 40 50
Liv1i-ei/d

FIG. 12. Results of two-dimecasional simaple shear flow sumulalions pre-
senued origimaily tn el 21 bus organized here using Uie scaling in Fig. 11.
Here L is the llnear dimension of the flow: d is the particie diameter amd A
(s the dominsnt leagt scale observed ia the density Gold, The data points A
0. A. a=d B correspond, respectvely, o ¥=0.1. 03. 0.5, 0.6. The suzight
lines are drawn through the data poiots 1o Zuide the eye.
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e ——
L5J1—¢%/o for a numaber of arca fracuons.

mean arca fraction. 7, are presented in Fig. 13. It is clear
from the laner figure that the slope approaches uaity in the
limit of low area fraction (the original theory is based on
equations of motion derived from the Boltzmann squation

and thus it is relisble in the low area fraction regime). A5 the,

area fraction increases, the slopes become smaller, 38 the in-
tercluster distance epproaches the interparticle distance (as
one would expect in the limit of ciose packing). Thus, while
some of the quantitative details regarding the nawwre of clus-
ters depend on deusity and on the specific sysem (here—e
sheared sysiem) the basic mechanism responsible for cluster-

ing in freely decaying flows, as expounded in Ref. 16, ap-

plies to shear flows (including dense flows) as well.

V. STABILITY ANALYSIS AND TIME SCALES

The process of clustering is faster the higher the average
granular temperature in the system. The degree of clustering
or of the inhomogeneity of the systern strongly depends on
the rate of this process relative to those of corapeting pro-
cesses such as diffusion and convection. Counsequently, 2
sheared system in which the granular temperamue is rela-
tively high (e.g., one prepared in an initial state whose aver-
age granular temperature is much higher than thet in the
statistically steady statg( to which the system cveatually
evolves) exhibits 2 markedly different dynamics {rom one in
which the (initial) temperature is low, all other externally
imposed parameters for the two systems being the same.
This is one of the sources of hysteretic behavior in grapular
systems, as further expounded below. It leads o the exist-
ence of multiple steady states which correspond to the same
external parameters but which are characterized by very dif-
ferent muicrostructures.

The numerically observed time scale for cluster creation
is very short in inhomogeneous systems (about z third of the
inverse shear rate) but it takes about 10 inverse shear rate
times for the initial condition to ssturate to e asymptouc
statistically steady state (cf. Fig. 14). It seems conceivable
that a linear stability analysis in which the convective terms

M-L. Tan and I. Goichirsch 9
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 heating and collisional cooling

of the equations are neglected should signal the layering/
clustering instability, which is observed to commence in 2
very short time. As shown in the next section, the results of
such a swmbility analysis (which differs from those of
Schmidt, Savage, and Babic, quoted below, since the con-
vective terms are ignored) do indeed confirm the instability
of the basic homogeneous state but they fail to account for
the rate of growth of this instability. One may conclude that
nonlinear effects take over at a very early stage of the dy-
namics that gives rise to layers and clusters.

A. Transient linear instablilty of shear flows

In previous work®~® a transient instability was found to
exist in homogeneous (uniform density) states in which the
velocity profile is linear. As mentioned above, these stability
analyses find that the wave vector corresponding to the most
upstable mode points at 135° (in real space) with respect to
the streamwise direction, in contrast with numenical findings.
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toned on the basis of the low growth rates pred{ctcd i:y it
(see below), it is interesting to note that the next transiently
most unstable mode corresponds to disturbances in real
space that lie along the 45° direction. Numencal simulations
[¢f. Fig. 14(a)] show that the iniual instability {with respect
to the homogencous state) indeed occurs mostly in the 135°
direction, as expected on the basis of linear stability analysis,
then the mode corresponding to the 45° direction is aceented. ~
Thus, while. as mentioned. linear swability analysis produces
disturbingly low growth rates, it does capture some of the
properties of the observed instabilities.

Consider the nearly eiastic low density limit of the
Jenkins—Richman equations (cf. Ref. 28):

E NT =
W T+vd,T)= ‘—i_ o8, (vTaT)—vTau,

+v§ T Tr E‘)!-ipz TR D
el G T,
\'If_

. ™ =
V(UJ+U;(‘?EUJ)= -ﬁj( VT)“‘ T o d,-uT)(é',-u}-+6_,-v.-
NI
T 5,'}&;0:] + -8— O"JTQUJ' . (3}

v=—4d{vu), (4)

where T ig the granular temperature and v is the arca frae-
tion, o is the diameter of a particle and g, denows &dry,
where i=1,2 denote the Carwesian components of the-posi-
tion vector r. The summation convention for repeated mdices
is assumed. The coefficient of restitution, €, appears- i’
es1-&2, and Tr D is the viscous heating function given
by TrD}=il(3p)(dw)+(8p,)*~(dp)?). Equaticns
(2)~(4) admit z basic solution with constant area fraction »,
(notice that the average arca fraction, when referring to nu-
merical results, is denoted by ¥) constant temperature 7 and
a velocity field v=(yy.0). The value of T in the steady state
is determined by the balance between the rate of viscous

2
To=21 7{ (3)

e

where [=moi8y, is the mean free path in the homogeneous
state. Similar (linearized) equations have been analyzed in
Refs. 23-25. There the coordinates of the fields were trans-
formed to frames of reference that move with the local mean
flow; this procedure climinates the coordinate-depeundeat
comvective terms in the original linearized equations, at the
price of defining modes in terms of time dependent wave
vectors. The resulting eguations are not scif-adjoint. Initial
disturbances are found to grow for short times (the growth
rates depending on the nawre of the variables used in the
analysis, a LPoinl discussed in Ref. 29) and then decay. It can
be proven® that simple shear flow is asymptotically linearty
stable, though there can be transient growth of infinitesimal
disturbances. In coatrast to the above studies, we consider
the transient evolution of infinitesimal disturbances of the
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basic state for times which are short enough for the effect of
convectrion to be negligible (i.c., shorter than the mverse
shear rate 7.=1/7), since clustering occurs on even shorter
ume scales.

In the following, it is convenient to nondimensionalize
Eqgs. (2)-(4) by measuring time in units of 7. and length in
units of V(Z®)L, and normalizing the area fraction v and
temperature T by their respective homogeneous values (in
the time independent solution) v, and To. Upon linearizing
around the steady solution (in which the rescaled T and v
equal unity and the velocity field is y£), one obtains

- (3
5T=—div v—2edv— \f; 5T
+2e(3, 805+, 80,) + J2€A 8T, (6)

&

+\/§A6v;. )

Sv=—div &%, (8)

where the notation is obvious. Assuming eigenmodes of the
form exp(ik-r+s¢) one obtains a fourth order characteristic
equation in 5 (as a function of & and k). The growth rates of
the most uastable solution [largest Re(s)] are depicted as a
function of the angle (of the wave vector) for two values of
the wave pumber in Fig. 'S and as a function of the wave
pumber for angles of 45° and 135°—in Fig. 16, Results are
presented for two values of e=1—&7°/The leading instability
points in the 45° direction in wave number space, as men-
tioned above. As mentioned, the maximal growth rate is dis-
turbingly far smaller than the shear rate. One may conclude
that linear stability 2nalysis provides an indication of the
nature of the unstable modes but it cannot explain their
growth rates. Notice, bowever, that the development of the
observed mode from the initial homogencous state (cf. Fig.
14) occurs on a time¢ scale which is larger than 7. Also
notice that the stability cquations analyzed in the above may
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£=0.5. The lincar size of the system 15 normalized © 1.

not be accurate for the low value of & for which simulations
are reported (much higher values of € require a much larger
number of particles in order to observe the clustering dyoam-

ics). In any case, it is evident that nonlinearities take over at
an carly time.

B. Nonlinear mechanism and multistability

A large enough granular system, and therefore one bav-
ing a large number of degrees of freedom, expericaces sta-
tistical fAuctuations of every macroscopic physical quantity
except those that are stictly conserved. Consider & sheared
hard-disk fuid at an initial temperature 7. Such & system
may have a shear flucwation of the form H=(0.0 gim kx),
where k is consistent with periodic boundary conditions in &
finite domain. Since equipartition is expected to hold during
early times before the dynamics of the systema becomes
dominated by clustering, the typical amplitude vg of such a
fluctuation can be estimated by computing the energy, stored
in the velocity field corresponding to this fluctuation and
comparing the result to mT;, which is the energy per degree
of freedom (7 is the mass of a particle). By equipartition, the
energy E, stored in a single shear mode Sv=(0,vq sin kx) is
E,=puv3L?, where L is the linear dimension of the flow do-
main. Thus, E,~mT, implies that vy ~ JT. /N, where N is
the total number of particles in the system, and therefore the
typical magnitude of h=ddv,/dx is h ~ kJT;/N. Let the
value of k™! comrespond 1o the expected dominant length
scale (ie., the intercluster separation; see below). If we as-
sume that k™ is long enough so that diffusion cffects can be
neglected with respect o viscous heating and inelastic dissi-
pation {(an assumption 1o be verified a posseriori) then we
can approximate Eq. (2) by

vT= —E o\T Tr D} — -?-:. il Y Eal 9)

16 4 \('11 a
Note that we are still considering the dynamics of the system
at carly times when the effect of convection ¢an be ne-
glected. Consider first the case when the initial wmperature
T, is so large that & is large comparcd 0 7 This happens
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Lne vISCOUs heaung function sn this ¢ase ¢an be approx:-
mated as follows:

hey,

(10)

Assuming that the density can be considered to be fixed in
Eqg. (9) and that the shear fluctuation is practically stationary
with respect to the rate of decay of the temperature 1o its
asymptotic value (assumptions again to be justified a poste-
riori), it can be shown that the solution to Eq. (9) is

sy 1 ( Ey\
2 o R e 43 R
Tr D}, 2(74-}:) 2h \1+ M+O

7

1*h? 2
T(:)-—A(r)(1+—;—' +o(}:) an)
where
_|1=a cxp(—\/;h:) *
Al 1+ea exp(— Veht) Lo
and

a=[1— Jn/u’h’f me) Y1 + vy

The condition that the diffusion term in Eq. (2) can bene-
g[ccted relative 10, say, the inelastic dissipation term is'® kI <
Je. The same condition ensures that diffusion is slow rela-
tive to the rate of saturation of 7(r) to its final value and that
the shear fluctuation is quasistationary. When 3/h<1, the
temperzture rapidly saturstes to the value dictated by the
(local) velocity field correspondimg to the shear fluctuation
and a comespording temperature gradient is formed in the
system. As a result, a pressure gradient is established as well.
The local value of the pressure is given, to a good degree of
approximation, by:
252
P=pvT=p,v — A(r).

Since I=wo/8v, we have P~p,oc’h*ev iec., the pressure
that is established is inversely proportional to the density.
Thus the pressure in demse regions is low relative to the
pressure in dilute regions rendering the clustering mecha-
nism preseated in Ref. 16 relevant here as well, The time
scale for mass motion leading to clustering can be estimated
from the part of Eq. (3) which contains the pressure induced
forces alone: pu=—VP. Using Eq. (4), it follows that
p=AP and the time scale, 7, , for mass motion is easily seen
to be

1 fo Ve

T Np— h (14)

The condition that 7, be shorter than the convective time
scale 7, is therefore: (ylh)J_<k! All in all: Jeyh<ki<
V€. Since 7, is shorter the larger the value of (it takes less
time for mass 1o move a distance ¥~° the shorter the dis-
tance), the fastest and dominant clustering process will occur
at the largest allowed value of k. Thus the clustering process
occurs on the scale determined by &~ /e [as in the unforced
case (Ref. 16)]. Since mass accumulates at the minima of &
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FIG. 17. The scatter plot of temperanure vs number density in System IX.
The values of v teraperature and number density are calculated by dividing
the domain into 200X200 cells.

x 10’

« {wherc the temperatre is lowest), this scale corresponds to

the typical separation between clusters in the fow.

In the case ¥A® 1 (ie., 7,<T,) thermal equilibration (to
the value T) occurs on a time scale of O[(2v2)/(/e)] [fol-
lowing Eq. (9)] i.e., one that is larger than 7.. The typical
time scale for mass motion (in the beginning of the process)
is I/(kVT, J_) and the condition for mass to accumuiate before
thermal equilibration sets in is 1/(kVT,) < 1,02, .kI
> (y1)/(JT,). The condition k!< e is still needed to cnsure
that diffusive effects do not dominate. These two conditions
imply 7;>T, contrary to the assumption T, <T,. Thus the "
mechanism of clustering cannot operate in this case. Indeed,
n this case numerical simulations reveal growing modes in
both the 45° and 135° degrees directions in the density ficld
during early times—yet no clustering. In contrast, when
yh<1, the ponlinear instability sets in much before these
modes have 2 chance to significantly grow in amplitade. A
state of *"chum flow'’ is then observed (see below). In the
case ¥h®1, clustering is still possible but only at later times,
when T(:} increases 10 its asymptodc value. Here on= ob-
tains cluster interactions as described above (and the condi-
tion for clustering can be satisfied since the temperahure is
given by Tp). It is important 10 note that once the clustcrs
have matured (i.c.. stopped growing) the pressure in thair
mnterior is not different from the ambient pressure. Since the
density in the mature clusters is relatively high, the r.cmpera
ture in their interior remains low. Figure 17 presents a scatter
plot of temperature vs density in System I based cn a divi-
sion of the domain into a grid of 200200 cells {the rem-
perature and density in each cell ere messured and pairs of
values of the former and the later are ploited in the figure).
The large fluctyations observed are due to the small number
of particles in each cell. The overall rend—the temperatuce
being a decreasing function of number density—is evident.

To reprise, the two fiow states shown in Figs. 18 and 19
are reached by the same system (asymptotically) after long
nimes, cotrespond respectively o the case in which T,< T,
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FIG. 18. The panticle configuration of & quasihomogencous shear flow at
steady staze. The portioa of the flow domain shown here comesponds to u
square regiop in the esater of the system whose e is 1/4 the ares of the
system. The paramelers characterizing the flow are £=0.6, v=0.03.
=20 000.

and that in which 7;%T,. The numerical simulatons reveal
that the dynamical histories of these two syst=ms are very
different. In the former system, clusters appear uniformly
and simultancously throughout the system and are dispersed
by convection and scatiering on & time scale that is compa-
rable to the time scale for the mass agglomeration that cre-

FIG. 19. The particle configuration of a chura shear flow at steady state on
which a vector plot of the velocity 6zl¢ is supcrposed. The portion of the
flow domain shown here corresponds 10 & squarc regiop @ the eeater of the
system whose scea is 1/4 the area of the system, The parameters chamcter.
izing the flow arc the samc 3s thosa of the fiow showe in Fig. 18.
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ates them. Since clusters aré mass attractors and two clusters
close together will coalesce, the fact that the agglomeration
time scale is comparable to the dispersive one ensures that 2
stronger clustering effect does not occur and that the clusters
remain rciatively small in size. This is not the case for the
churn flow depicted in Fig. 19. since the initial mass agglom-
cration time scale, being inversely proportional to the square
root of the transient temperature, is so fast that convection by
the mean shear has no time to act on the clusters that are
formed. Nevertheless, convection in this case plays 2 role at
Jater times by gradually sweeping the clusters together and
causing them 1o coalesce into extended regions of high den-
sity. Thus, that the history dependence or hysteresis in shear
flows arises because of the dependence of the time scale for
mass agglomeration on the transient temperature. When this
time scale is short. most of the mass of the system becomes
rapidly entrapped in clusiers, leaving a very dilute and volu-
minous ambient. The subsequent dynamics of the system be-
comes dominated by the dense clusters that arc formed.
When the time scale for mass agglomeration is comparable
to those of the convection and diffusion, the latter processes
continually rehomogenized the flow. Still another state (plug
flow)'® can be obtained with the same externel parameters
when the shear rate is built up in a time dependent fashion.

V. CONCLUSION

We have shown that microstructures play a dominant
role in the dynamics of sheared granujar fows. They deter-
mine not only the properties of a given sysiem but are also
responsible for hysteretic effects. Clusters mey ioterect as
macroparticles and exhibit scattering, mutual apribilation
and revival effects. Oun the basis of e resuits presented in
this paper we conclude that 0o theory of granular systems is
complete without 2 proper sccounting of the microstuctures.
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