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It has been recently discovered that an important generic feature of rapidly deforming (granular) systems of inelasti-
cally colliding particles is their tendency to form dense particle clusters of low kinetic energy within dilute ambients
of energetic particles. The thesis of the present paper is that for systems subject to external shearing the mechanism
responsible for the formation of clusters is a nonlinear instability involving the combined action of long-wavelength
hydrodynamic modes, convective transport (i.e. stretching by the shear) and local inelastic dissipation. The time
scale for cluster formation is found to be inversely proportional to the average fluctuating kinetic energy (‘granular
temperature’) of the particles in the system. The degree of clustering in a system depends significantly on the
rate of this process relative to those of other competing processes such as diffusion and convection. As a result,
a sheared system in which the granular temperature is relatively high (e.g. one prepared in an initial state whose
granular temperature is much higher than that in the statistically steady state to which the system evolves) exhibits
a markedly different dynamics from one in which the temperature is low, all other-externally imposed parameters
for the two systems being the same. This is one of the sources of hysterectic behavior in granular systems: it leads
to the existence of multiple steady states which correspond to the same external parameters yet are characterized by
very different microstructures. A model for these multistable states is presented and results of numerical simulations
are used to demonstrate the variance of the steady state into which a system may evolve with respect to the initial
conditions and the application of transient forces. Other possible mechanisms for multistability are briefly discussed.

1 Introduction

The notion of a ‘granular fluid’ arises when a system of
macroscopic grains, such as sand or coal particles, are
subject to such rapid deformation rates that the contacts
between individual grains do not endure and their mo-
tion is rapidly randomized by frequent collisions. The
microscopic dynamics of such a system bears an obvious
analogy to that of a regular fluid, the main difference be-
ing that the collisions in the granular fluid are inelastic.
Despite this analogy, granular fluids are rheologically very
different from classical fluids. A most significant differ-
ence is the tendency of granular systems to form dense
clusters of particles of low kinetic energy within dilute
ambients of energetic particles. These clusters and other
related ‘inelastic microstructures’ have been observed nu-
merically in in chute flows[1], shear flows[2, 3|, and in
free flows[4, 5] (i.e. in systems that are left to decay from
initial energetic states). Shear flows exhibit hysteresis:
different flow states may arise depending on the history
of the system, and the microstructures corresponding to
these states can be significantly different from one an-
other. Other unusual dynamical effects, such as normal
stress differences[6], inelastic collapse[7, 8], generalized
phase transitions[5], and oscillations[9, 10] are also found
in granular fluids; some of these are reviewed in [11, 12].

The abovementioned analogy to the kinetics of classi-
cal fluids led to derivations of constitutive relations that
parallel similar derivations in the classical kinetic the-
ory of gases. The output of these derivations (cf. [13]

and references therein) is a set of continuum equations
for the kinetic energy density (‘granular temperature’)
and for the mass and momentum densities, which have
been moderately successful in explaining results of exper-
iments and numerical simulations. However, these equa-
tions still fall short in some respects, most of which have
to do with the fact that the existence of microstructures
(i.e. strong inhomogeneities) has not been taken into ac-
count in their derivation. It seems, though, that these
equations can successfully be used for the analysis of the
dynamics of microstuctures in nearly elastic and nearly
homogeneous systems. A stability analysis of these equa-
tions for the case of a free (unforced) system reveals that
while homogeneous solutions do exist they are unstable to
infinitesimal (inhomogeneous) perturbations[14, 5]. Also,
a nonlinear instability was shown to be responsible for
the clustering process in this case[4, 5]. Shear flows in
both two- and three-dimensions, unlike unforced granu-
lar systems, are linearly stable, though some eigenmodes
may grow for a finite time before reverting to temporal
decay. This transient instability has been found to ex-
ist in homogeneous states in which the velocity profile
is linear[15, 16, 18], although it is expected that a sim-
ilar phenomenon exists in more complex setups as well.
The stability analyses show that the orientation of the
wavevector that correspond to the (transiently) most un-
stable mode coincides approximately with the extensional
axis of the shear, which corresponds to disturbances that
lie in real space at 135 degrees from the streamwise di-
rection.

The rest of the paper is organized as follows: Section 2



presents a linear stability analysis of simple shear flows.
In Section 3 the various time scales characterizing the dy-
namics of fluctuations in the shear flow are presented and
the nature of the nonlinear mechanism which is responsi-
ble for the clustering process is elucidated. Particular em-
phasis is laid on the dependence of the typical time scales
on the initial conditions and the way their values deter-
mine the major dynamical mechanisms and the ultimate,
long-time fate of the system. Some results of large-scale
2-dimensional simulations of shear flows, substantiating
the theoretical model proposed, are also presented in Sec-
tion 2 and Section 3. A brief summary and an account of
other routes to multistability in shear flows are given in
Section 4.

2 Linear Stability Analysis

A plot of the particle configuration in a typical simple
granular shear flow is shown in Fig. 1. The plot is ob-
tained from a simulation of the dynamics of a system
of inelastic disks, whose collisions are characterized by a
normal cofficient of restitution, in a square enclosure of di-
mensions L x L that is periodically extended in both the
z- and y-directions. The periodic boundary conditions
are applied in the Lagrangian frame corresponding to lin-
ear shear and are known as the ‘Lees-Edwards’ boundary
conditions[19, 2, 3]. One may regard the above system
as one whose horizontal boundaries, which are parallel
to the streamwise direction, move at equal and opposite
velocities £U/2, the velocity of the top boundary being
positive. It is more accurate to think of the system as
having a linear velocity profile in the streamwise direc-
tion z, such that the streamwise velocity v, = yy where
v = U/L is the shear rate.

The flow field depicted in Fig. 1 is statistically station-
ary. It contains relatively dense strips aligned along the
extensional axis of the shear which are interspersed be-
tween relatively dilute strips of a similar orientation and
size. The dense strips have a secondary inner structure
consisting of dense clusters which are elongated along the
strips in which they reside. The mechanism responsible
for the emergence of clusters in this system can be eluci-
dated by considering the linear stability of the equations
derived in [17] for two dimensional flows of monodisperse
disks from kinetic theory. In the low-density limit, which
is the regime we are considering, these equations read:
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where T is the granular temperature field defined as half
the local average of the squared velocity fluctuations and
v is the volume (area) fraction of the particles (i.e. re-
duced density) which equals p/p, where p is the density
and p, is the mass density of a solid particle; also o is
the diameter of a particle and 9; denotes 8/8r;, where
1 = 1,2 indicates the cartesian components of the posi-

v o=

tion vector r. The summation convention for repeated
indices is assumed. The coefficient of restitution, €, ap-
pears in € = 1 — &2, and TrD}; is the viscous heating

function given by

(4)

Equations (1)-(3) admit a basic solution with constant
volume fraction v, temperature Tp and a velocity field
v = (7¥,0). The value of T, is determined by the balance
between the rate of energy pumping by viscous heating
and the rate of energy loss by the inelastic collisions, cor-

responding respectively to the third and fourth terms on
the r.h.s of (1), which yields:
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where | = no /8y is the mean free path corresponding to
the basic state.

The linear stability of shear flows governed by equa-
tions derived from kinetic theory, which are similar to (1)-
(3), has been investigated before[15, 16, 18]. In [15, 18],
the linearized equations are analyzed by first transform-
ing them to coordinates which travel with the local mean
flow and then by performing a Fourier transform of
the resulting equations. This procedure eliminates the
coordinate-dependent convective terms in the original lin-
earized equations, at the price of defining modes in terms
of time dependent wavevectors, which are continually ro-
tated by the mean shear. The resulting equations are not
self-adjoint. Disturbances evolving from ¢t = 0 are found
to grow for short times (the growth rates depending on
the nature of the variables used in the analysis, a point
discussed in [14]) then decay. An elaborate analysis pre-
sented in [16] shows rigorously that simple shear flow is
asymptotically linearly stable, though there can be tran-
sient growth of infinitesimal disturbances. Here we con-
sider the transient evolution of infinitesimal disturbances
of the basic state for times which are short enough for the
effect of convection to be negligible. It is easy to see that
the typical convective time scale is: 7. ~ 1/y. For times
much less than 7., fluid elements in the system may be
considered to be unaffected by the mean flow and hence
the convective terms in the equations may be dropped to
a good degree of approximation.



In the following, it is convenient to nondimensionalize

(1)-(3) by defining:
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It is also convenient to introduce the dimensionless quan-
tity

(8)

which, as shown below, corresponds to the ratio of the
typical separation between clusters to the linear dimen-
sion of the system. The infinitesimal disturbances §T, 67,
6v of the basic state are defined by:

T = 1+46T (9)
Vo= 1460 (10)
Vo= gx4év. (11)

Assuming eigenmodes of the form exp(ik - F + st), and
substituting (6)-(11) in (1)-(3), dropping the convective
terms and linearizing in the disturbances, one obtains:

_VEge2y2

6‘01 0
s bvy _ 0 Ve
bv —ik cos @ —iksin 6
6T 1k(2¢/€sinf — cos8) ik(24/ecosf - sinb)
cou . €6" 2 si «
—i6*%kcosf ik i—z_,rs—ng——é 2cos6 §v,
~i6*2ksing ik (<t _ g2 g 8vz
0 0 g;

__2\/2 —\/E—%\/E(S‘zkz

(12)

where k = (kcos 8, ksin6) and the tildes on the distur-
bances have been dropped for notational convenience.

Let § = 6"k, which in dimensional units is equal to
(2wnl/Ly/€) for the nth mode in k-space, and consider
the limit § < 1. In practice, this is usually the limit of in-
terest, since the dominant wavelengths L/n for relatively
inelastic systems are found in the numerical simulations
to be such that § < 1. The characteristic equation corre-
sponding to (12) is:
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where the terms of order 62 or higher have not been writ-
ten out explicitly. The full solution of (13) (i.e. including
the O(8%) terms) can be obtained numerically, and solu-
tions for the largest positive root, s,,, for v/ = 0.8 are
shown in Fig. 2 and Fig. 3. These graphs show that

€sin 26

- \/E> s+0(8%) =0 (13)

K

for small values of 5_, Re[s,] is largest when 6 = 3x/4.
For larger values of 4, a cross-over occurs and Re[s,,] be-
comes largest when 6 = w/4. The directions of maximal
growth are interchanged again at still larger values of &.
A detailed numerical study of the solutions of (13) shows
that Re[sy,] is positive in the range 0 < § < 1 for all
values of /€ less than approximately 1/7. The directions
of maximal growth are also found to remain in either the
8 = x/4 or 8§ = 3w/4 directions. The real parts of the
other roots of (13) are either negative or much smaller in
magnitude than Refsn,].

For the case § < 1, (13) allows for a perturbative study
of its solutions through which the stability properties of
the problem can be made more transparent. Neglect-
ing the O(83) terms, and noting that one root of (13) is
s; = 0, we seek solutions for the other roots as series in §
and V8§: s; = z:c’:o a,6%" and S3.4 = E:ozl b,6™. A sub-
stitution of the above ansatz into (13) yields the following
solutions:
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For small values of §, it is seen that the only growing
mode corresponds to s3 and that the maximal growth rate
occurs in the § = 37 /4 direction. For long enough wave-
lengths, transient linear growth is largest at 45 degrees
from the streamwise direction; for intermediate wave-
lengths, the growth rate is largest at 135 degrees from
the streamwise direction (note that the direction of the
wavevector of a mode is at right angles to the direction
of the strips of equal phase in real space).

3 Nonlinear Mechanism and

Multistability

We next outline a nonlinear mechanism which is initi-
ated by the transiently growing linear modes and which
we propose as the mechanism leading to cluster forma-
tion in sheared systems. A large enough granular system,
hence one having a large number of degrees of freedom,
experiences statistical fluctuations of every macroscopic
physical quantity except those that are strictly conserved.
Consider a sheared hard-disk fluid at an ‘initial’ temper-
ature T;. Such a system may have a shear fluctuation
(with a finite probability) of the form év = (0, vo sin kz),
where k is consistent with periodic boundary conditions
in finite domain. Since equipartition is expected to hold



during early times before the dynamics of the system be-
comes dominated by clustering, the (typical) amplitude
vo of such a fluctuation can be estimated by comput-
ing the energy stored in the velocity field corresponding
to this fluctuation and comparing the result, order-of-
magnitude-wise, to mT;, which is the energy per degree
of freedom (m is the mass of a particle). It is easy to
show that vo ~ +/T;/N, where N is the total number of
particles in the system, and that the typical magnitude
of h = dbvy/0z is h ~ k+/T;/N. Let the value of k cor-
respond to the expected dominant length scale (i.e. the
intercluster separation; see below). If we assume that the
corresponding length scale, k71, is long enough so that
diffusion effects can be neglected with respect to viscous
heating and inelastic energy decay (an assumption to be
justified a-posteriori) then we can approximate (1) by:

Jro

Note that we are still considering the dynamics of the sys-
tem at early times when the effect of convection can be
neglected. Consider firstly the case when the initial tem-
perature T; is so large that A is large compared to . This
happens when T; is much larger than Ty, the asymptotic
value of the temperature given by (5) (the more precise
statement of the condition is T; > v/ NT,). The viscous
heating function in this case can be approximated as fol-
lows:
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Assuming that the density can be considered to be fixed in
(17) and that the shear fluctuation is practically station-
ary with respect to the rate of decay of the temperature
to its asymptotic value (assumptions again to be justified
a-posteriori), it can be shown that the solution to (17) is:
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where a = {1 - \/T,-/(lzhz/vre)] / [1 + \/7‘;/(12}12/7&)].
The condition that diffusion is slow relative to the rate
of saturation of T(t) to its final value and that the shear
fluctuation is quasi-stationary can be shown to be equiv-

alent to:
kl < /e (21)

This result, derived in detail in [20] and in [5] for free sys-
tems, is physically plausible since diffusion is important
only at large k, and the shear fluctuation, being of hydro-
dynamic scale, can decay only by a diffusive (i.e. viscous)
mechanism. When y/h < 1, the temperature rapidly sat-
urates to the value dictated by the (local) velocity field

(20)

corresponding to the shear fluctuation and a correspond-
ing temperature gradient is formed in the system. As a
result, a pressure gradient is established as well, its value
being given by:
12 2

P = p,vT ~ p,v——A(t). (22)
.3

Since | = 70 /8v, we have P ~ p,02h?/ev, i.e. the pres-
sure that is established is inversely proportional to the
density. Thus the pressure in dense regions is low rela-
tive to the pressure in dilute regions, causing mass to be
transfered from the latter into the former. The excess
of mass causes the dense regions to cool at a faster rate
(since the collision rate there is increased), causing a fur-
ther reduction in the values of the pressure in them and
thus to a further mass flow into them. All in all, a small
departure from a state of uniform density will generate an
internal pressure difference that amplifies the departure,
leading finally to the formation of high density clusters.
For clustering to be possible, the mass must agglomerate
at a faster rate than that of it being stretched apart by
the mean shear, and fast enough to render diffusive pro-
cesses inefficient. The time scale for mass motion leading
to clustering can be estimated from the part of (2) which
contains the pressure induced forces alone: pv = —VP.
Using (3), it follows that p = AP, and the time scale, 7,,
for mass motion is easily seen to be
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The condition that 7;,, be shorter than the convective time

scale, 7, is therefore: (y/h)\/e < kl. When this is com-
bined with (21), we have

-vG% <kl < e .

Notice that h depends on T; and hence its value can be
made large enough so that y/h < 1. Thus the condition
(24) on k can be easily satisfied. In fact (24) also en-
compasses the assumption in the linear analysis that the
mean flow may be considered static on the time scale for
linear growth, since from (15) we have 1/s3 ~ (/e/kly
and 1/s3 < 1/v implies that kI > /e. Since 7, is shorter
the larger the value of k (it takes less time for mass to
move a distance k=1 the shorter the distance), the fastest
and dominant clustering process will occur at the largest

(23)
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allowed value of k. Thus the clustering process occurs
on the scale determined by kl ~ \/e. Since mass accu-
mulates at the minima of h (where the temperature is
lowest), this scale corresponds to the typical separation
between clusters in the flow.

The case v/h > 1 (i.e. T; < Tp) can be analyzed in a
similar way and the corresponding conditions on k are

kl > \/%\/E

kl < Ve
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Figure 1: The particle configuration of a quasihomoge-
neous shear flow at steady state on which a vector plot of
the velocity field is superposed. The parameters charac-
terizing the flow are: € = 0.6, vo = 0.05, N = 20000.

Since (25) and (26) cannot be satisfied simultaneously, no
clustering is possible at early times. Indeed, in this case,
numerical simulations reveal growing modes in both the
45 and 135 degrees directions in the density field during
early times yet no clustering. In contrast, when y/h <« 1,
the nonlinear instability sets in much before the linear
modes have a chance to significantly grow in amplitude,
and the mass motion is so fast that large clusters are
formed and they rapidly coalesce to form extended regions
of high density, thus masking out the transient growth of
the linear modes. For the case y/h > 1, clustering is
possible at later times when T'(t) increases to its asymp-
totic value, but mass that agglomerated is also quickly
dispersed by convection. When this happens, the quan-
tity \/v/h is no longer arbitrarily large but takes an O(1)
value which allows (25) and (26) to be satisfied simul-
taneously. This again implies a scale for the clustering
process determined by kl ~ ,/e. The microstructure in
this case (shown in Fig. 1) consists of moderately dense
and interspersed clusters which are continually dispersed
and recreated in the flow. The clusters also scatter con-
tinually into each other as they are being rotated and
stretched by the mean shear, resulting in a highly time-
dependent microstructure. It is noted that the stripwise
organization of the clusters as shown in Fig. 1 persists
despite the strong time-dependence. This organization is
stabilized by a complex mechanism involving the inter-
play of mass agglomeration along the extensional axis of
the shear, convective dispersion and cluster-cluster scat-
tering, the details of which will be presented in [20].

To reprise, the two flow states shown in Fig. 1 and Fig.
4, which are reached by the system asymptotically after
long times, correspond respectively to the case in which
T; < Tp and that in which T} > Ty. The flows shown will
respectively be refered to as the ‘quasihomogeneous’ flow
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Figure 2: The real part of s,, as a function of § at fixed
6 = w/4 (solid line) and § = 3x/4 (dotted line). The
value of /e is 0.8.
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Figure 3: The real part of s, as a function of 8 for §=05
(solid line) and é = 0.1 (dotted line). The value of /e is
0.8.

Figure 4: The particle configuration of a plugged shear
flow at steady state on which a vector plot of the velocity
field is superposed. The parameters characterizing the
flow are the same as those of the flow shown in Fig. 1.



